[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

Related tags

Deep Learninginsgen
Overview

InsGen - Data-Efficient Instance Generation from Instance Discrimination

image

Data-Efficient Instance Generation from Instance Discrimination
Ceyuan Yang, Yujun Shen, Yinghao Xu, Bolei Zhou
arXiv preprint arXiv: 2106.04566

[Paper] [Project Page]

In this work, we develop a novel data-efficient Instance Generation (InsGen) method for training GANs with limited data. With the instance discrimination as an auxiliary task, our method makes the best use of both real and fake images to train the discriminator. The discriminator in turn guides the generator to synthesize as many diverse images as possible. Experiments under different data regimes show that InsGen brings a substantial improvement over the baseline in terms of both image quality and image diversity, and outperforms previous data augmentation algorithms by a large margin.

Qualitative results

Here we provide some synthesized samples with different numbers of training images and correspoding FID. Full codebase and weights are coming soon. image

Inference

Here, all pretrained models can be downloaded from Google Drive:

Model FID Link
AFHQ512-CAT 2.60 link
AFHQ512-DOG 5.44 link
AFHQ512-WILD 1.77 link
Model FID Link
FFHQ256-2K 11.92 link
FFHQ256-10K 4.90 link
FFHQ256-140K 3.31 link

You can download one of them and put it under MODEL_ZOO directory, then synthesize images via

# Generate AFHQ512-CAT with truncation.
python generate.py --network=${MODEL_ZOO}/afhqcat.pkl \
                   --outdir=${TARGET_DIR} \
                   --trunc=0.7 \
                   --seeds=0-10

Training

This repository is built based on styleGAN2-ada-pytorch. Therefore, please prepare datasets first use dataset_tool.py. On top of Generative Adversarial Networks (GANs), we introduce contrastive loss into the training of discriminator, following MoCo. Concretely, the discriminator is used to extract features from images (either real or synthesized) and then trained with an auxiliary task by distinguishing every individual image.

As described in training/contrastive_head.py, we add two addition heads on top of the original discriminator. These two heads are used to project features extracted from real and fake data onto a unit ball respectively. More details can be found in paper. Note that InsGen can be easily applied to any GAN model by merely introducing two contrastive heads. According to MoCo, the feature extractor should be updated in a momentum manner. Here, in InsGen, the contrastive heads are updated in the forward() function, while the discriminator is updated in training/training_loop.py (see D_ema).

Please use the following command to start your own training:

python train.py --gpus=8 \
                --data=${DATA_PATH} \
                --cfg=paper256 \
                --outdir=training_example

In this example, the results are saved to a created director training_example. --cfg specifies the training configuration, which can be further customized with additional options:

  • --no_insgen disables InsGen, back to original StyleGAN2-ADA.
  • --rqs overrides the number of real image queue size. (default: 5% of the total number of training samples)
  • --fqs overrides the number of fake image queue size. More samples are beneficial, especially when the training samples are limited. (default: 5% of the total number of training samples)
  • --gamma overrides the R1 gamma (i.e., gradient penalty). As described in styleGAN2-ada-pytorch, training can be sensitive to this hyper-parameter. It would be better to try some different values. Here, we recommend using a smaller one than that in original StyleGAN2-ADA.

More functions would be supported after this projest is merged into our genforce. Please stay tuned!

License

This work is made available under the Nvidia Source Code License.

Acknowledgements

We thank Janne Hellsten and Tero Karras for the pytorch version codebase of their styleGAN2-ada-pytorch.

BibTeX

@article{yang2021insgen,
  title   = {Data-Efficient Instance Generation from Instance Discrimination},
  author  = {Yang, Ceyuan and Shen, Yujun and Xu, Yinghao and Zhou, Bolei},
  journal = {arXiv preprint arXiv:2106.04566},
  year    = {2021}
}
Owner
GenForce: May Generative Force Be with You
Research on Generative Modeling in Zhou Group
GenForce: May Generative Force Be with You
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
This repo contains the code for paper Inverse Weighted Survival Games

Inverse-Weighted-Survival-Games This repo contains the code for paper Inverse Weighted Survival Games instructions general loss function (--lfn) can b

3 Jan 12, 2022
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Winnie Xu 95 Nov 26, 2021
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022