a Lightweight library for sequential learning agents, including reinforcement learning

Related tags

Deep Learningsalina
Overview

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning)

TL;DR

salina is a lightweight library extending PyTorch modules for developping sequential decision models. It can be used for Reinforcement Learning (including model-based with differentiable environments, multi-agent RL, ...), but also in a supervised/unsupervised learning settings (for instance for NLP, Computer Vision, etc..).

  • It allows to write very complex sequential models (or policies) in few lines
  • It works on multiple CPUs and GPUs

Quick Start

  • Just clone the repo

Documentation

For development, set up pre-commit hooks:

  • Run pip install pre-commit
    • or conda install -c conda-forge pre-commit
    • or brew install pre-commit
  • In the top directory of the repo, run pre-commit install to set up the git hook scripts
  • Now pre-commit will run automatically on git commit!
  • Currently isort, black and blacken-docs are used, in that order

Organization of the repo

Dependencies

salina is making use of pytorch, hydra for configuring experiments, and of gym for reinforcement learning algorithms.

Note on the Logger

We provide a simple Logger that logs in both tensorboard format, but also as pickle files that can be re-read to make tables and figures. See logger. This logger can be easily replaced by any other logger.

Description

Sequential Decision Making is much more than Reinforcement learning

  • Sequential Decision Making is about interactions:
  • Interaction with data (e.g attention-models, decision tree, cascade models, active sensing, active learning, recommendation, etc….)
  • Interaction with an environment (e.g games, control)
  • Interaction with humans (e.g recommender systems, dialog systems, health systems, …)
  • Interaction with a model of the world (e.g simulation)
  • Interaction between multiple entities (e.g multi-agent RL)

What salina is

  • A sandbox for developping sequential models at scale.

  • A small (300 hundred lines) 'core' code that defines everything you will use to implement agents involved in sequential decision learning systems.

    • It is easy to understand and to use since it keeps the main principles of pytorch, just extending nn.Module to Agent that handle tthe temporal dimension.

A set of agents that can be combined (like pytorch modules) to obtain complex behaviors

  • A set of references implementations and examples in different domains Reinforcement learning, Imitation Learning, Computer Vision, ... (more to come..)

What salina is not

  • Yet another reinforcement learning framework: salina is focused on sequential decision making in general. It can be used for RL (which is our main current use-case), but also for supervised learning, attention models, multi-agent learning, planning, control, cascade models, recommender systems,...
  • A library: salina is just a small layer on top of pytorch that encourages good practices for implementing sequential models. It thus very simple to understand and to use, but very powerful.

Citing salina

Please use this bibtex if you want to cite this repository in your publications:

Link to the paper: SaLinA: Sequential Learning of Agents

    @misc{salina,
        author = {Ludovic Denoyer, Alfredo de la Fuente, Song Duong, Jean-Baptiste Gaya, Pierre-Alexandre Kamienny, Daniel H. Thompson},
        title = {SaLinA: Sequential Learning of Agents},
        year = {2021},
        publisher = {Arxiv},
        howpublished = {\url{https://gitHub.com/facebookresearch/salina}},
    }

Papers using SaLinA:

  • Learning a subspace of policies for online adaptation in Reinforcement Learning. Jean-Baptiste Gaya, Laure Soulier, Ludovic Denoyer - Arxiv

License

salina is released under the MIT license. See LICENSE for additional details about it. See also our Terms of Use and Privacy Policy.

Owner
Facebook Research
Facebook Research
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
[NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature"

IP-IRM [NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature". Codes will be relea

Wang Tan 67 Dec 24, 2022
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
A curated list of awesome deep long-tailed learning resources.

A curated list of awesome deep long-tailed learning resources.

vanint 210 Dec 25, 2022
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Zero-Shot Domain Adaptation with a Physics Prior [arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and J

Attila Lengyel 40 Dec 21, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023