a Lightweight library for sequential learning agents, including reinforcement learning

Related tags

Deep Learningsalina
Overview

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning)

TL;DR

salina is a lightweight library extending PyTorch modules for developping sequential decision models. It can be used for Reinforcement Learning (including model-based with differentiable environments, multi-agent RL, ...), but also in a supervised/unsupervised learning settings (for instance for NLP, Computer Vision, etc..).

  • It allows to write very complex sequential models (or policies) in few lines
  • It works on multiple CPUs and GPUs

Quick Start

  • Just clone the repo

Documentation

For development, set up pre-commit hooks:

  • Run pip install pre-commit
    • or conda install -c conda-forge pre-commit
    • or brew install pre-commit
  • In the top directory of the repo, run pre-commit install to set up the git hook scripts
  • Now pre-commit will run automatically on git commit!
  • Currently isort, black and blacken-docs are used, in that order

Organization of the repo

Dependencies

salina is making use of pytorch, hydra for configuring experiments, and of gym for reinforcement learning algorithms.

Note on the Logger

We provide a simple Logger that logs in both tensorboard format, but also as pickle files that can be re-read to make tables and figures. See logger. This logger can be easily replaced by any other logger.

Description

Sequential Decision Making is much more than Reinforcement learning

  • Sequential Decision Making is about interactions:
  • Interaction with data (e.g attention-models, decision tree, cascade models, active sensing, active learning, recommendation, etc….)
  • Interaction with an environment (e.g games, control)
  • Interaction with humans (e.g recommender systems, dialog systems, health systems, …)
  • Interaction with a model of the world (e.g simulation)
  • Interaction between multiple entities (e.g multi-agent RL)

What salina is

  • A sandbox for developping sequential models at scale.

  • A small (300 hundred lines) 'core' code that defines everything you will use to implement agents involved in sequential decision learning systems.

    • It is easy to understand and to use since it keeps the main principles of pytorch, just extending nn.Module to Agent that handle tthe temporal dimension.

A set of agents that can be combined (like pytorch modules) to obtain complex behaviors

  • A set of references implementations and examples in different domains Reinforcement learning, Imitation Learning, Computer Vision, ... (more to come..)

What salina is not

  • Yet another reinforcement learning framework: salina is focused on sequential decision making in general. It can be used for RL (which is our main current use-case), but also for supervised learning, attention models, multi-agent learning, planning, control, cascade models, recommender systems,...
  • A library: salina is just a small layer on top of pytorch that encourages good practices for implementing sequential models. It thus very simple to understand and to use, but very powerful.

Citing salina

Please use this bibtex if you want to cite this repository in your publications:

Link to the paper: SaLinA: Sequential Learning of Agents

    @misc{salina,
        author = {Ludovic Denoyer, Alfredo de la Fuente, Song Duong, Jean-Baptiste Gaya, Pierre-Alexandre Kamienny, Daniel H. Thompson},
        title = {SaLinA: Sequential Learning of Agents},
        year = {2021},
        publisher = {Arxiv},
        howpublished = {\url{https://gitHub.com/facebookresearch/salina}},
    }

Papers using SaLinA:

  • Learning a subspace of policies for online adaptation in Reinforcement Learning. Jean-Baptiste Gaya, Laure Soulier, Ludovic Denoyer - Arxiv

License

salina is released under the MIT license. See LICENSE for additional details about it. See also our Terms of Use and Privacy Policy.

Owner
Facebook Research
Facebook Research
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
Open source Python module for computer vision

About PCV PCV is a pure Python library for computer vision based on the book "Programming Computer Vision with Python" by Jan Erik Solem. More details

Jan Erik Solem 1.9k Jan 06, 2023
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Rishik Mourya 48 Dec 20, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
HomeAssitant custom integration for dyson

HomeAssistant Custom Integration for Dyson This custom integration is still under development. This is a HA custom integration for dyson. There are se

Xiaonan Shen 232 Dec 31, 2022
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
Solving reinforcement learning tasks which require language and vision

Multimodal Reinforcement Learning JAX implementations of the following multimodal reinforcement learning approaches. Dual-coding Episodic Memory from

Henry Prior 31 Feb 26, 2022
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022