Reporting and Visualization for Hazardous Events

Overview

IncidenceReporting

Reporting and Visualization for Hazardous Events

Web Page

Problem Statement

Create a solution that spreads awareness of, visualizes the importance of, and/or decreases the time-to-action of safety-related incidents or topics.

Example safety-related incidents: 1) Identification and reporting of tripping hazards 2) Personnel near heavy machinery 3) Escape of toxic gases

Map Visualization

Solution

Video data is collected to detect if someone has fallen, or if personnel are too near heavy machinery, or if another safety-related incident has happened. If someone is too near heavy machinery, a notification will be sent out to them. Additionally, we have a webpage to visualize safety incidents geographically and topically, and we also have a place for people to write anonymous incidence reports.

Pose Estimation

Description

Inspiration for your submission

  • Our inspiration came from Conoco Phillip's Spirit Values. We wanted to create something that represented these values and we believe our application does an excellent representation.
  • SAFETY - Safety is the core idea of our application. We wanted to provide an objective solution to safety.
  • PEOPLE - The people are what drives this application. We gave them the power to view and upload data.
  • INTEGRITY - Integrity is extremely important and this application provides transparency to our people.
  • RESPONSIBILITY - We believe everyone is responsible and this will provide employees with more accountability.
  • INNOVATION - Innovation is what powers this application our fall detection will help us identify safety issues throughout Conoco Phillips.
  • TEAMWORK - Together we can create technology to keep us safe and responsible.

What your submission does

  • Tripping hazards and heavy machinery incident reporting web app
  • Automatic incident reporting
  • Automatic fall detection and reporting using ML
  • Fall recording logging using EchoAR

How you built it

  • Streamlit
  • python
  • C++
  • Firebase

Challenges that you ran into, and how you overcame them

  • Machine Learning Model was tricky to set up
  • Map was not working for a long time

Accomplishments that you're proud of

  • Elegant UI
  • Email integration
  • Pose Estimation

What's next for your product?

  • Integration with CCTV cameras
  • adapt the solution to companies other than ConocoPhillips. We feel our solution can be applied to any company with workplace safety issues
  • Our team split up the work to most efficiently produce a working front end and back end. The front end of our product was constructed using Streamlit, which is a web-app framework that writes markdown from python. This allowed us to easily construct forms and display data in a visually easy-to-digest way for the user. Our data would be stored on a local SQL database such as MySQL, which was able to communicate with our product through the MySQL-Connector python library. Finally, our product also includes a machine learning model that can detect incidents and automatically report them and store the data in the database.

Challenges that you ran into, and how you overcame them

  • We faced adversities when attempting to integrate the different parts of our product such as the database, machine learning, and the front-end data visualization components.

Accomplishments that you're proud of

  • We are proud of producing a Minimum Viable Product that we could showcase to the company and that we believe suits a broad set of use-cases.

What's next for your product?

  • In the future, we hope to update our product in terms of specificity and scale. Some ideas that encompass this could include more incident types and more complex query abilities for the user.

Running the app

streamlit run main.py

Running Machine Learning Algorithm

cd Human-Falling-Detect-Tracks/
python main.py --device=cpu
Owner
Jv Kyle Eclarin
snakes and letters
Jv Kyle Eclarin
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
Baselines for TrajNet++

TrajNet++ : The Trajectory Forecasting Framework PyTorch implementation of Human Trajectory Forecasting in Crowds: A Deep Learning Perspective TrajNet

VITA lab at EPFL 183 Jan 05, 2023
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Phil Wang 189 Nov 22, 2022
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

Almaz 2 Dec 08, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)

Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n

8 Oct 20, 2022
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
Arquitetura e Desenho de Software.

S203 Este é um repositório dedicado às aulas de Arquitetura e Desenho de Software, cuja sigla é "S203". E agora, José? Como não tenho muito a falar aq

Fabio 7 Oct 23, 2021
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022