Reporting and Visualization for Hazardous Events

Overview

IncidenceReporting

Reporting and Visualization for Hazardous Events

Web Page

Problem Statement

Create a solution that spreads awareness of, visualizes the importance of, and/or decreases the time-to-action of safety-related incidents or topics.

Example safety-related incidents: 1) Identification and reporting of tripping hazards 2) Personnel near heavy machinery 3) Escape of toxic gases

Map Visualization

Solution

Video data is collected to detect if someone has fallen, or if personnel are too near heavy machinery, or if another safety-related incident has happened. If someone is too near heavy machinery, a notification will be sent out to them. Additionally, we have a webpage to visualize safety incidents geographically and topically, and we also have a place for people to write anonymous incidence reports.

Pose Estimation

Description

Inspiration for your submission

  • Our inspiration came from Conoco Phillip's Spirit Values. We wanted to create something that represented these values and we believe our application does an excellent representation.
  • SAFETY - Safety is the core idea of our application. We wanted to provide an objective solution to safety.
  • PEOPLE - The people are what drives this application. We gave them the power to view and upload data.
  • INTEGRITY - Integrity is extremely important and this application provides transparency to our people.
  • RESPONSIBILITY - We believe everyone is responsible and this will provide employees with more accountability.
  • INNOVATION - Innovation is what powers this application our fall detection will help us identify safety issues throughout Conoco Phillips.
  • TEAMWORK - Together we can create technology to keep us safe and responsible.

What your submission does

  • Tripping hazards and heavy machinery incident reporting web app
  • Automatic incident reporting
  • Automatic fall detection and reporting using ML
  • Fall recording logging using EchoAR

How you built it

  • Streamlit
  • python
  • C++
  • Firebase

Challenges that you ran into, and how you overcame them

  • Machine Learning Model was tricky to set up
  • Map was not working for a long time

Accomplishments that you're proud of

  • Elegant UI
  • Email integration
  • Pose Estimation

What's next for your product?

  • Integration with CCTV cameras
  • adapt the solution to companies other than ConocoPhillips. We feel our solution can be applied to any company with workplace safety issues
  • Our team split up the work to most efficiently produce a working front end and back end. The front end of our product was constructed using Streamlit, which is a web-app framework that writes markdown from python. This allowed us to easily construct forms and display data in a visually easy-to-digest way for the user. Our data would be stored on a local SQL database such as MySQL, which was able to communicate with our product through the MySQL-Connector python library. Finally, our product also includes a machine learning model that can detect incidents and automatically report them and store the data in the database.

Challenges that you ran into, and how you overcame them

  • We faced adversities when attempting to integrate the different parts of our product such as the database, machine learning, and the front-end data visualization components.

Accomplishments that you're proud of

  • We are proud of producing a Minimum Viable Product that we could showcase to the company and that we believe suits a broad set of use-cases.

What's next for your product?

  • In the future, we hope to update our product in terms of specificity and scale. Some ideas that encompass this could include more incident types and more complex query abilities for the user.

Running the app

streamlit run main.py

Running Machine Learning Algorithm

cd Human-Falling-Detect-Tracks/
python main.py --device=cpu
Owner
Jv Kyle Eclarin
snakes and letters
Jv Kyle Eclarin
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
Second Order Optimization and Curvature Estimation with K-FAC in JAX.

KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX Installation | Quickstart | Documentation | Examples | Citing KFAC-JAX KFAC-JAX

DeepMind 90 Dec 22, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Super Resolution for images using deep learning.

Neural Enhance Example #1 — Old Station: view comparison in 24-bit HD, original photo CC-BY-SA @siv-athens. As seen on TV! What if you could increase

Alex J. Champandard 11.7k Dec 29, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
SphereFace: Deep Hypersphere Embedding for Face Recognition

SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa

Weiyang Liu 1.5k Dec 29, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Open-Set Recognition: A Good Closed-Set Classifier is All You Need Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You

194 Jan 03, 2023
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022