PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Related tags

Deep LearningBAS
Overview

Background Activation Suppression for Weakly Supervised Object Localization

PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''. This repository contains PyTorch training code, inference code and pretrained models.

📋 Table of content

  1. 📎 Paper Link
  2. 💡 Abstract
  3. Motivation
  4. 📖 Method
  5. 📃 Requirements
  6. ✏️ Usage
    1. Start
    2. Download Datasets
    3. Training
    4. Inference
  7. 📊 Experimental Results
  8. ✉️ Statement
  9. 🔍 Citation

📎 Paper Link

Background Activation Suppression for Weakly Supervised Object Localization (link)

  • Authors: Pingyu Wu*, Wei Zhai*, Yang Cao
  • Institution: University of Science and Technology of China (USTC)

💡 Abstract

Weakly supervised object localization (WSOL) aims to localize the object region using only image-level labels as supervision. Recently a new paradigm has emerged by generating a foreground prediction map (FPM) to achieve the localization task. Existing FPM-based methods use cross-entropy (CE) to evaluate the foreground prediction map and to guide the learning of generator. We argue for using activation value to achieve more efficient learning. It is based on the experimental observation that, for a trained network, CE converges to zero when the foreground mask covers only part of the object region. While activation value increases until the mask expands to the object boundary, which indicates that more object areas can be learned by using activation value. In this paper, we propose a Background Activation Suppression (BAS) method. Specifically, an Activation Map Constraint module (AMC) is designed to facilitate the learning of generator by suppressing the background activation values. Meanwhile, by using the foreground region guidance and the area constraint, BAS can learn the whole region of the object. Furthermore, in the inference phase, we consider the prediction maps of different categories together to obtain the final localization results. Extensive experiments show that BAS achieves significant and consistent improvement over the baseline methods on the CUB-200-2011 and ILSVRC datasets.

Motivation


Motivation. (A) The entroy value of CE loss $w.r.t$ foreground mask and foreground activation value $w.r.t$ foreground mask. To illustrate the generality of this phenomenon, more examples are shown in the subfigure on the right. (B) Experimental procedure and related definitions. Implementation details of the experiment and further results are available in the Supplementary Material.

Exploratory Experiment

We introduce the implementation of the experiment, as shown in Fig. \ref{Exploratory Experiment} (A). For a given GT binary mask, the activation value (Activation) and cross-entropy (Entropy) corresponding to this mask are generated by masking the feature map. We erode and dilate the ground-truth mask with a convolution of kernel size $5n \times 5n$, obtain foreground masks with different area sizes by changing the value of $n$, and plot the activation value versus cross-entropy with the area as the horizontal axis, as shown in Fig. \ref{Exploratory Experiment} (B). By inverting the foreground mask, the corresponding background activation values for the foreground mask area are generated in the same way. In Fig. \ref{Exploratory Experiment} (C), we show the curves of entropy, foreground activation, and background activation with mask area. It can be noticed that both background activation and foreground activation values have a higher correlation with the mask compared to the entropy. We show more examples in the Supplementary Material.


Exploratory Experiment. Examples about the entroy value of CE loss $w.r.t$ foreground mask and foreground activation value $w.r.t$ foreground mask.

📖 Method


The architecture of the proposed BAS. In the training phase, the class-specific foreground prediction map $F^{fg}$ and the coupled background prediction map $F^{bg}$ are obtained by the generator, and then fed into the activation map constraint module together with the feature map $F$. In the inference phase, we utilize Top-k to generate the final localization map.

📃 Requirements

  • python 3.6.10
  • torch 1.4.0
  • torchvision 0.5.0
  • opencv 4.5.3

✏️ Usage

Start

git clone https://github.com/wpy1999/BAS.git
cd BAS

Download Datasets

Training

We will release our training code upon acceptance.

Inference

To test the CUB models, you can download the trained models from [ Google Drive (VGG16) ], [ Google Drive (Mobilenetv1) ], [ Google Drive (ResNet50) ], [ Google Drive (Inceptionv3) ], then run BAS_inference.py:

cd CUB
python BAS_inference.py --arch vgg

To test the ILSVRC models, you can download the trained models from [ Google Drive (VGG16) ], [ Google Drive (Mobilenetv1) ], [ Google Drive (ResNet50) ], [ Google Drive (Inceptionv3) ], then run BAS_inference.py:

cd ILSVRC
python BAS_inference.py --arch vgg

📊 Experimental Results



✉️ Statement

This project is for research purpose only, please contact us for the licence of commercial use. For any other questions please contact [email protected] or [email protected].

🔍 Citation

@inproceedings{BAS,
  title={Background Activation Suppression for Weakly Supervised Object Localization},
  author={Pingyu Wu and Wei Zhai and Yang Cao},
  booktitle={xxx},
  year={2021}
}
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022
A Python type explainer!

typesplainer A Python typehint explainer! Available as a cli, as a website, as a vscode extension, as a vim extension Usage First, install the package

Typesplainer 79 Dec 01, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
In Search of Probeable Generalization Measures

In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co

Mahdi S. Hosseini 6 Sep 11, 2022
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
A python tutorial on bayesian modeling techniques (PyMC3)

Bayesian Modelling in Python Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling t

Mark Regan 2.4k Jan 06, 2023
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
Fine-Tune EleutherAI GPT-Neo to Generate Netflix Movie Descriptions in Only 47 Lines of Code Using Hugginface And DeepSpeed

GPT-Neo-2.7B Fine-Tuning Example Using HuggingFace & DeepSpeed Installation cd venv/bin ./pip install -r ../../requirements.txt ./pip install deepspe

Nikita 180 Jan 05, 2023
[BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations"

DomainMix [BMVC2021] The official implementation of "DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations" [paper] [de

Wenhao Wang 17 Dec 20, 2022
It is modified Tensorflow 2.x version of Mask R-CNN

[TF 2.X] Mask R-CNN for Object Detection and Segmentation [Notice] : The original mask-rcnn uses the tensorflow 1.X version. I modified it for tensorf

Milner 34 Nov 09, 2022
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022