Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Overview

Unsupervised Learning of Visual 3D Keypoints for Control

[Project Website] [Paper]

Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2
1UC Berkeley 2Carnegie Mellon University

teaser

This is the code base for our paper on unsupervised learning of visual 3d keypoints for control. We propose an unsupervised learning method that learns temporally-consistent 3d keypoints via interaction. We jointly train an RL policy with the keypoint detector and shows 3d keypoints improve the sample efficiency of task learning in a variety of environments. If you find this work helpful to your research, please cite us as:

@inproceedings{chen2021unsupervised,
    title={Unsupervised Learning of Visual 3D Keypoints for Control},
    author={Boyuan Chen and Pieter Abbeel and Deepak Pathak},
    year={2021},
    Booktitle={ICML}
}

Environment Setup

If you hope to run meta-world experiments, make sure you have your mujoco binaries and valid license key in ~/.mujoco. Otherwise, you should edit the requirements.txt to remove metaworld and mujoco-py accordingly to avoid errors.

# clone this repo
git clone https://github.com/buoyancy99/unsup-3d-keypoints
cd unsup-3d-keypoints

# setup conda environment
conda create -n keypoint3d python=3.7.5
conda activate keypoint3d
pip3 install -r requirements.txt

Run Experiments

When training, all logs will be stored at data/, visualizations will be stored in images/ and all check points at ckpts/. You may use tensorboard to visualize training log or plotting the monitor files.

Quick start with pre-trained weights

# Visualize metaworld-hammer environment
python3 visualize.py --algo ppokeypoint -t hammer -v 1 -m 3d -j --offset_crop --decode_first_frame --num_keypoint 6 --decode_attention --seed 99 -u -e 0007

# Visualize metaworld-close-box environment
python3 visualize.py --algo ppokeypoint -t bc -v 1 -m 3d -j --offset_crop --decode_first_frame --num_keypoint 6 --decode_attention --seed 99 -u -e 0008

Reproduce the keypoints similiar to the two pre-trained checkpoints

# To reproduce keypoints visualization similiar to the above two checkpoints, use these commands
# Feel free to try any seed using [--seed]. Seeding makes training deterministic on each machine but has no guarantee across devices if using GPU. Thus you might not get the exact checkpoints as me if GPU models differ but resulted keypoints should look similiar. 

python3 train.py --algo ppokeypoint -t hammer -v 1 -e 0007 -m 3d -j --total_timesteps 6000000 --offset_crop --decode_first_frame --num_keypoint 6 --decode_attention --seed 200 -u

python3 train.py --algo ppokeypoint -t bc -v 1 -e 0008 -m 3d -j --total_timesteps 6000000 --offset_crop --decode_first_frame --num_keypoint 6 --decode_attention --seed 200 -u

Train & Visualize Pybullet Ant with Keypoint3D(Ours)

# use -t antnc to train ant with no color 
python3 train.py --algo ppokeypoint -t ant -v 1 -e 0001 -m 3d --frame_stack 2 -j --total_timesteps 5000000 --num_keypoint 16 --latent_stack --decode_first_frame --offset_crop --mean_depth 1.7 --decode_attention --separation_coef 0.005 --seed 99 -u

# After checkpoint is saved, visualize
python3 visualize.py --algo ppokeypoint -t ant -v 1 -e 0001 -m 3d --frame_stack 2 -j --total_timesteps 5000000 --num_keypoint 16 --latent_stack --decode_first_frame --offset_crop --mean_depth 1.7 --decode_attention --separation_coef 0.005 --seed 99 -u

Train Pybullet Ant with baselines

# RAD PPO baseline
python3 train.py --algo pporad -t ant -v 1 -e 0002 --total_timesteps 5000000 --frame_stack 2 --seed 99 -u

# Vanilla PPO baseline
python3 train.py --algo ppopixel -t ant -v 1 -e 0003 --total_timesteps 5000000 --frame_stack 2 --seed 99 -u

Train & Visualize 'Close-Box' environment in Meta-world with Keypoint3D(Ours)

python3 train.py --algo ppokeypoint -t bc -v 1 -e 0004 -m 3d -j --offset_crop --decode_first_frame --num_keypoint 32 --decode_attention --total_timesteps 4000000 --seed 99 -u

# After checkpoint is saved, visualize
python3 visualize.py --algo ppokeypoint -t bc -v 1 -e 0004 -m 3d -j --offset_crop --decode_first_frame --num_keypoint 32 --decode_attention --total_timesteps 4000000 --seed 99 -u

Train 'Close-Box' environment in Meta-world with baselines

# RAD PPO baseline
python3 train.py --algo pporad -t bc -v 1 -e 0005 --total_timesteps 4000000 --seed 99 -u

# Vanilla PPO baseline
python3 train.py --algo ppopixel -t bc -v 1 -e 0006 --total_timesteps 4000000 --seed 99 -u

Other environments in general

# Any training command follows the following format
python3 train.py -a [algo name] -t [env name] -v [env version] -e [experiment id] [...]

# Any visualization command is simply using the same options but run visualize.py instead of train.py
python3 visualize.py -a [algo name] -t [env name] -v [env version] -e [experiment id] [...]

# For colorless ant, you can change the ant example's [-t ant] flag to [-t antnc]
# For metaworld, you can change the close-box example's [-t bc] flag to other abbreviations such as [-t door] etc.

# For a full list of arugments and their meanings,
python3 train.py -h

Update Log

Data Notes
Jun/15/21 Initial release of the code. Email me if you have questions or find any errors in this version.
Jun/16/21 Add all metaworld environments with notes about placeholder observations
Owner
Boyuan Chen
PhD at MIT studying ML + Robotics
Boyuan Chen
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
Torchyolo - Yolov3 ve Yolov4 modellerin Pytorch uygulamasıdır

TORCHYOLO : Yolo Modellerin Pytorch Uygulaması Yapılacaklar: Yolov3 model.py ve

Kadir Nar 3 Aug 22, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue. This

290 Dec 29, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022