LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

Overview

LightningFSL: Few-Shot Learning with Pytorch-Lightning

LICENSE Python last commit

In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, including two official ones

Boosting Few-Shot Classification with View-Learnable Contrastive Learning (ICME 2021)

Rectifying the Shortcut Learning of Background for Few-Shot Learning (NeurIPS 2021)

Contents

  1. Advantages
  2. Few-shot classification Results
  3. General Guide

Advantages:

This repository is built on top of LightningCLI, which is very convenient to use after being familiar with this tool.

  1. Enabling multi-GPU training
    • Our implementation of FSL framework allows DistributedDataParallel (DDP) to be included in the training of Few-Shot Learning, which is not available before to the best of our knowledge. Previous researches use DataParallel (DP) instead, which is inefficient and requires more computation storages. We achieve this by modifying the DDP sampler of Pytorch, making it possible to sample few-shot learning tasks among devices. See dataset_and_process/samplers.py for details.
  2. High reimplemented accuracy
    • Our reimplementations of some FSL algorithms achieve strong performance. For example, our ResNet12 implementation of ProtoNet and Cosine Classifier achieves 76+ and 80+ accuracy on 5w5s task of miniImageNet, respectively. All results can be reimplemented using pre-defined configuration files in config/.
  3. Quick and convenient creation of new algorithms
    • Pytorch-lightning provides our codebase with a clean and modular structure. Built on top of LightningCLI, our codebase unifies necessary basic components of FSL, making it easy to implement a brand-new algorithm. An impletation of an algorithm usually only requires three short additional files, one specifying the lightningModule, one specifying the classifer head, and the last one specifying all configurations. For example, see the code of ProtoNet (modules/PN.py, architectures/classifier/proto_head.py) and cosine classifier (modules/cosine_classifier.py, architectures/classifier/CC_head.py.
  4. Easy reproducability
    • Every time of running results in a full copy of yaml configuration file in the logging directory, enabling exact reproducability (by using the direct yaml file instead of creating a new one).
  5. Enabling both episodic/non-episodic algorithms
    • Switching with a single parameter is_meta in the configuration file.

Implemented Few-shot classification Results

Implemented results on few-shot classification datasets. The average results of 2,000 randomly sampled episodes repeated 5 times for 1/5-shot evaluation with 95% confidence interval are reported.

miniImageNet Dataset

Models Backbone 5-way 1-shot 5-way 5-shot pretrained models
Protypical Networks ResNet12 61.19+-0.40 76.50+-0.45 link
Cosine Classifier ResNet12 63.89+-0.44 80.94+-0.05 link
Meta-Baseline ResNet12 62.65+-0.65 79.10+-0.29 link
S2M2 WRN-28-10 58.85+-0.20 81.83+-0.15 link
S2M2+Logistic_Regression WRN-28-10 62.36+-0.42 82.01+-0.24
MoCo-v2(unsupervised) ResNet12 52.03+-0.33 72.94+-0.29 link
Exemplar-v2 ResNet12 59.02+-0.24 77.23+-0.16 link
PN+CL ResNet12 63.44+-0.44 79.42+-0.06 link
COSOC ResNet12 69.28+0.49 85.16+-0.42 link

General Guide

To understand the code correctly, it is highly recommended to first quickly go through the pytorch-lightning documentation, especially LightningCLI. It won't be a long journey since pytorch-lightning is built on the top of pytorch.

Installation

Just run the command:

pip install -r requirements.txt

running an implemented few-shot model

  1. Downloading Datasets:
  2. Training (Except for Meta-baseline and COSOC):
    • Choose the corresponding configuration file in 'config'(e.g.set_config_PN.py for PN model), set inside the parameter 'is_test' to False, set GPU ids (multi-GPU or not), dataset directory, logging dir as well as other parameters you would like to change.
    • modify the first line in run.sh (e.g., python config/set_config_PN.py).
    • To begin the running, run the command bash run.sh
  3. Training Meta-baseline:
    • This is a two-stage algorithm, with the first stage being CEloss-pretraining, followed by ProtoNet finetuning. So a two-stage training is need. The first training uses the configuration file config/set_config_meta_baseline_pretrain.py. The second uses config/set_config_meta_baseline_finetune.py, with pre-training model path from the first stage, specified by the parameterpre_trained_path in the configuration file.
  4. Training COSOC:
    • For pre-training Exemplar, choose configuration file config/set_config_MoCo.py and set parameter is_exampler to True.
    • For runing COS algorithm, run the command python COS.py --save_dir [save_dir] --pretrained_Exemplar_path [model_path] --dataset_path [data_path]. [save_dir] specifies the saving directory of all foreground objects, [model_path] and [data_path] specify the pathes of pre-trained model and datasets, respectively.
    • For runing a FSL algorithm with COS, choose configuration file config/set_config_COSOC.py and set parameter data["train_dataset_params"] to the directory of saved data of COS algorithm, pre_trained_path to the directory of pre-trained Exemplar.
  5. Testing:
    • Choose the same configuration file as training, set parameter is_test to True, pre_trained_path to the directory of checkpoint model (with suffix '.ckpt'), and other parameters (e.g. shot, batchsize) as you disire.
    • modify the first line in run.sh (e.g., python config/set_config_PN.py).
    • To begin the testing, run the command bash run.sh

Creating a new few-shot algorithm

It is quite simple to implement your own algorithm. most of algorithms only need creation of a new LightningModule and a classifier head. We give a breif description of the code structure here.

run.py

It is usually not needed to modify this file. The file run.py wraps the whole training and testing procedure of a FSL algorithm, for which all configurations are specified by an individual yaml file contained in the /config folder; see config/set_config_PN.py for example. The file run.py contains a python class Few_Shot_CLI, inherited from LightningCLI. It adds new hyperpameters (Also specified in configuration file) as well as testing process for FSL.

FewShotModule

Need modification. The folder modules contains LightningModules for FSL models, specifying model components, optimizers, logging metrics and train/val/test processes. Notably, modules/base_module.py contains the template module for all FSL models. All other modules inherit the base module; see modules/PN.py and modules/cosine_classifier.py for how episodic/non-episodic models inherit from the base module.

architectures

Need modification. We divide general FSL architectures into feature extractor and classification head, specified respectively in architectures/feature_extractor and architectures/classifier. These are just common nn modules in pytorch, which shall be embedded in LightningModule mentioned above. The recommended feature extractor is ResNet12, which is popular and shows promising performance. The classification head, however, varies with algorithms and need specific designs.

Datasets and DataModule

It is usually not needed for modification. Pytorch-lightning unifies data processing across training, val and testing into a single LightningDataModule. We disign such a datamodule in dataset_and_process/datamodules/few_shot_datamodule.py for FSL, enabling episodic/non-episodic sampling and DDP for multi-GPU fast training. The definition of Dataset itself is in dataset_and_process/datasets, specified as common pytorch datasets class. There is no need to modify the dataset module unless new datasets are involved.

Callbacks and Plugins

It is usually not needed for modification. See documentation of pytorch-lightning for detailed introductions of callbacks and Plugins. They are additional functionalities added to the system in a modular fashion.

Configuration

Need modification. See LightningCLI for how a yaml configuration file works. For each algorithm, there needs one specific configuration file, though most of the configurations are the same across algorithms. Thus it is convenient to copy one configuration and change it for a new algorithm.

Owner
Xu Luo
M.S. student of SMILE Lab, UESTC
Xu Luo
This repository contains an implementation of the Permutohedral Attention Module in Pytorch

Permutohedral_attention_module This repository contains an implementation of the Permutohedral Attention Module

Samuel JOUTARD 26 Nov 27, 2022
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
Motion planning environment for Sampling-based Planners

Sampling-Based Motion Planners' Testing Environment Sampling-based motion planners' testing environment (sbp-env) is a full feature framework to quick

Soraxas 23 Aug 23, 2022
πŸš€ PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π° ΠΏΠΎ матСматичСским ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ машинного обучСния

ML-MathMethods-Test ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ Ρ€Π°Π±ΠΎΡ‚Π° ΠΏΠΎ матСматичСским ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌ машинного обучСния. ВычислСниС основных статистик, Π΄ΠΈΠ°Π³Ρ€Π°ΠΌΠΌ ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ², ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° Ρ€Π°Π·Π»

Stas Ivanovskii 1 Jan 06, 2022
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha

25 Jul 20, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
Differentiable Surface Triangulation

Differentiable Surface Triangulation This is our implementation of the paper Differentiable Surface Triangulation that enables optimization for any pe

61 Dec 07, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022