Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Overview

Aspect-level Sentiment Classification

Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’.

Data

The preprocessed aspect-level datasets can be downloaded at [Download], and the document-level datasets can be downloaded at [Download]. The zip files should be decompressed and put in the main folder.

The pre-trained Glove vectors (on 840B tokens) are used for initializing word embeddings. You can download the extracted subset of Glove vectors for each dataset at [Download], the size of which is much smaller. The zip file should be decompressed and put in the main folder.

Training and evaluation

Pretraining on document-level dataset

The pretrained weights from document-level examples used in our experiments are provided at pretrained_weights/. You can use them directly for initialising aspect-level models.

Or if you want to retrain on ducment-level again, execute the command below under code_pretrain/:

CUDA_VISIBLE_DEVICES="0" python pre_train.py \
--domain $domain \

where $domain in ['yelp_large', 'electronics_large'] denotes the corresponding document-level domain. The trained model parameters will be saved under pretrained_weights/. You can find more arguments defined in pre_train.py with default values used in our experiments.

Training and evaluation on aspect-level dataset

To train aspect-level sentiment classifier, excute the command below under code/:

CUDA_VISIBLE_DEVICES="0" python train.py \
--domain $domain \
--alpha 0.1 \
--is-pretrain 1 \

where $domain in ['res', 'lt', 'res_15', 'res_16'] denotes the corresponding aspect-level domain. --alpha denotes the weight of the document-level training objective (\lamda in the paper). --is-pretrain is set to either 0 or 1, denoting whether to use pretrained weights from document-level examples for initialisition. You can find more arguments defined in train.py with default values used in our experiments. At the end of each epoch, results on training, validation and test sets will be printed respectively.

Dependencies

  • Python 2.7
  • Keras 2.1.2
  • tensorflow 1.4.1
  • numpy 1.13.3

Cite

If you use the code, please cite the following paper:

@InProceedings{he-EtAl:2018,
  author    = {He, Ruidan  and  Lee, Wee Sun  and  Ng, Hwee Tou  and  Dahlmeier, Daniel},
  title     = {Exploiting Document Knowledge for Aspect-level Sentiment Classification},
  booktitle = {Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics},
  publisher = {Association for Computational Linguistics}
}
Owner
Ruidan He
NLP scientist at Alibaba DAMO Academy. Ph.D. from NUS.
Ruidan He
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
GULAG: GUessing LAnGuages with neural networks

GULAG: GUessing LAnGuages with neural networks Classify languages in text via neural networks. Привет! My name is Egor. Was für ein herrliches Frühl

Egor Spirin 12 Sep 02, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program

50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program. All the statistics required for the complete understanding of data science will be uploaded in this repository.

komal_lamba 22 Dec 09, 2022
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
Automatic detection and classification of Covid severity degree in LUS (lung ultrasound) scans

Final-Project Final project in the Technion, Biomedical faculty, by Mor Ventura, Dekel Brav & Omri Magen. Subproject 1: Automatic Detection of LUS Cha

Mor Ventura 1 Dec 18, 2021
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.

Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in

1 Jan 03, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022
Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Official PyTorch implementation of "Learning Not to Reconstruct Anomalies" This is the implementation of the paper "Learning Not to Reconstruct Anomal

Marcella Astrid 13 Dec 04, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022