Aggragrating Nested Transformer Official Jax Implementation

Overview

Aggragrating Nested Transformer Official Jax Implementation

NesT is a simple method, which aggragrates nested local transformers on image blocks. The idea makes vision transformers attain better accuracy, data efficiency, and convergence on the ImageNet benchmark. NesT can be scaled to small datasets to match convnet accuracy.

This is not an officially supported Google product.

Pretrained Models and Results

Model Accuracy Checkpoint path
Nest-B 83.8 gs://gresearch/nest-checkpoints/nest-b_imagenet
Nest-S 83.3 gs://gresearch/nest-checkpoints/nest-s_imagenet
Nest-T 81.5 gs://gresearch/nest-checkpoints/nest-t_imagenet

Note: Accuracy is evaluated on the ImageNet2012 validation set.

Tensorbord.dev

See ImageNet training logs at Tensorboard.dev.

Colab

Colab is available for test: https://colab.sandbox.google.com/github/google-research/nested-transformer/blob/main/colab.ipynb

Instruction on Image Classification

Environment setup

virtualenv -p python3 --system-site-packages nestenv
source nestenv/bin/activate

pip install -r requirements.txt

Evaluate on ImageNet

At the first time, download ImageNet following tensorflow_datasets instruction from command lines. Optionally, download all pre-trained checkpoints

bash ./checkpoints/download_checkpoints.sh

Run the evaluation script to evaluate NesT-B.

python main.py --config configs/imagenet_nest.py --config.eval_only=True \
  --config.init_checkpoint="./checkpoints/nest-b_imagenet/ckpt.39" \
  --workdir="./checkpoints/nest-t_imagenet_eval"

Train on ImageNet

The default configuration trains NesT-B on TPUv2 8x8 with per device batch size 16.

python main.py --config configs/imagenet_nest.py --jax_backend_target=<TPU_IP_ADDRESS> --jax_xla_backend="tpu_driver" --workdir="./checkpoints/nest-b_imagenet"

Note: See jax/cloud_tpu_colab for info about TPU_IP_ADDRESS.

Train NesT-T on 8 GPUs.

python main.py --config configs/imagenet_nest_tiny.py --workdir="./checkpoints/nest-t_imagenet_8gpu"

The codebase does not support multi-node GPU training (>8 GPUs). The models reported in our paper is trained using TPU with 1024 total batch size.

Train on CIFAR

# Recommend to train on 2 GPUs. Training NesT-T can use 1 GPU.
CUDA_VISIBLE_DEVICES=0,1 python  main.py --config configs/cifar_nest.py --workdir="./checkpoints/nest_cifar"

Cite

@inproceedings{zhang2021aggregating,
  title={Aggregating Nested Transformers},
  author={Zizhao Zhang and Han Zhang and Long Zhao and Ting Chen and Tomas Pfister},
  booktitle={arXiv preprint arXiv:2105.12723},
  year={2021}
}
Owner
Google Research
Google Research
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Daniel Povey 41 Jan 07, 2023
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022