1st place solution in CCF BDCI 2021 ULSEG challenge

Overview

1st place solution in CCF BDCI 2021 ULSEG challenge

This is the source code of the 1st place solution for ultrasound image angioma segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

[Challenge leaderboard 🏆 ]

Pipeline of our solution

Our solution includes data pre-processing, network training, ensabmle inference and post-processing.

Data pre-processing

To improve our performance on the leaderboard, 5-fold cross validation is used to evaluate the performance of our proposed method. In our opinion, it is necessary to keep the size distribution of tumor in the training and validation sets. We calculate the tumor area for each image and categorize the tumor size into classes: 1) less than 3200 pixels, 2) less than 7200 pixels and greater than 3200 pixels, and 3) greater than 7200 pixels. These two thresholds, 3200 pixels and 7200 pixels, are close to the tertiles. We divide images in each size grade group into 5 folds and combined different grades of single fold into new single fold. This strategy ensured that final 5 folds had similar size distribution.

Network training

Due to the small size of the training set, for this competition, we chose a lightweight network structure: Linknet with efficientnet-B6 encoder. Following methods are performed in data augmentation (DA): 1) horizontal flipping, 2) vertical flipping, 3) random cropping, 4) random affine transformation, 5) random scaling, 6) random translation, 7) random rotation, and 8) random shearing transformation. In addition, one of the following methods was randomly selected for enhanced data augmentation (EDA): 1) sharpening, 2) local distortion, 3) adjustment of contrast, 4) blurring (Gaussian, mean, median), 5) addition of Gaussian noise, and 6) erasing.

Ensabmle inference

We ensamble five models (five folds) and do test time augmentation (TTA) for each model. TTA generally improves the generalization ability of the segmentation model. In our framework, the TTA includes vertical flipping, horizontal flipping, and rotation of 180 degrees for the segmentation task.

Post-processing

We post-processe the obtained binary mask by removing small isolated points (RSIP) and edge median filtering (EMF) . The edge part of our predicted tumor is not smooth enough, which is not quite in line with the manual annotation of the physician, so we adopt a small trick, i.e., we do a median filtering specifically for the edge part, and the experimental results show that this can improve the accuracy of tumor segmentation.

Segmentation results on 2021 CCF BDCI dataset

We test our method on 2021 CCD BDCI dataset (215 for training and 107 for testing). The segmentation results of 5-fold CV based on "Linknet with efficientnet-B6 encoder" are as following:

fold Linknet Unet Att-Unet DeeplabV3+ Efficient-b5 Efficient-b6 Resnet-34 DA EDA TTA RSIP EMF Dice (%)
1 85.06
1 84.48
1 84.72
1 84.93
1 86.52
1 86.18
1 86.91
1 87.38
1 88.36
1 89.05
1 89.20
1 89.52
E 90.32

How to run this code?

Here, we split the whole process into 5 steps so that you can easily replicate our results or perform the whole pipeline on your private custom dataset.

  • step0, preparation of environment
  • step1, run the script preprocess.py to perform the preprocessing
  • step2, run the script train.py to train our model
  • step3, run the script inference.py to inference the test data.
  • step4, run the script postprocess.py to perform the preprocessing.

You should prepare your data in the format of 2021 CCF BDCI dataset, this is very simple, you only need to prepare: two folders store png format images and masks respectively. You can download them from [Homepage].

The complete file structure is as follows:

  |--- CCF-BDCI-2021-ULSEG-Rank1st
      |--- segmentation_models_pytorch_4TorchLessThan120
          |--- ...
          |--- ...
      |--- saved_model
          |--- pred
          |--- weights
      |--- best_model
          |--- best_model1.pth
          |--- ...
          |--- best_model5.pth
      |--- train_data
          |--- img
          |--- label
          |--- train.csv
      |--- test_data
          |--- img
          |--- predict
      |--- dataset.py
      |--- inference.py
      |--- losses.py
      |--- metrics.py
      |--- ploting.py
      |--- preprocess.py
      |--- postprocess.py
      |--- util.py
      |--- train.py
      |--- visualization.py
      |--- requirement.txt

Step0 preparation of environment

We have tested our code in following environment:

For installing these, run the following code:

pip install -r requirements.txt

Step1 preprocessing

In step1, you should run the script and train.csv can be generated under train_data fold:

python preprocess.py \
--image_path="./train_data/label" \
--csv_path="./train_data/train.csv"

Step2 training

With the csv file train.csv, you can directly perform K-fold cross validation (default is 5-fold), and the script uses a fixed random seed to ensure that the K-fold cv of each experiment is repeatable. Run the following code:

python train.py \
--input_channel=1 \
--output_class=1 \
--image_resolution=256 \
--epochs=100 \
--num_workers=2 \
--device=0 \
--batch_size=8 \
--backbone="efficientnet-b6" \
--network="Linknet" \
--initial_learning_rate=1e-7 \
--t_max=110 \
--folds=5 \
--k_th_fold=1 \
--fold_file_list="./train_data/train.csv" \
--train_dataset_path="./train_data/img" \
--train_gt_dataset_path="./train_data/label" \
--saved_model_path="./saved_model" \
--visualize_of_data_aug_path="./saved_model/pred" \
--weights_path="./saved_model/weights" \
--weights="./saved_model/weights/best_model.pth" 

By specifying the parameter k_th_fold from 1 to folds and running repeatedly, you can complete the training of all K folds. After each fold training, you need to copy the .pth file from the weights path to the best_model folder.

Step3 inference (test)

Before running the script, make sure that you have generated five models and saved them in the best_model folder. Run the following code:

python inference.py \
--input_channel=1 \
--output_class=1 \
--image_resolution=256 \
--device=0 \
--backbone="efficientnet-b6" \
--network="Linknet" \
--weights1="./saved_model/weights/best_model1.pth" \
--weights2="./saved_model/weights/best_model2.pth" \
--weights3="./saved_model/weights/best_model3.pth" \
--weights4="./saved_model/weights/best_model4.pth" \
--weights5="./saved_model/weights/best_model5.pth" \
--test_path="./test_data/img" \
--saved_path="./test_data/predict" 

The results of the model inference will be saved in the predict folder.

Step4 postprocess

Run the following code:

python postprocess.py \
--image_path="./test_data/predict" \
--threshood=50 \
--kernel=20 

Alternatively, if you want to observe the overlap between the predicted result and the original image, we also provide a visualization script visualization.py. Modify the image path in the code and run the script directly.

Acknowledgement

  • Thanks to the organizers of the 2021 CCF BDCI challenge.
  • Thanks to the 2020 MICCCAI TNSCUI TOP 1 for making the code public.
  • Thanks to qubvel, the author of smg and ttach, all network and TTA used in this code come from his implement.
Owner
Chenxu Peng
Data Science, Deep Learning
Chenxu Peng
Arquitetura e Desenho de Software.

S203 Este é um repositório dedicado às aulas de Arquitetura e Desenho de Software, cuja sigla é "S203". E agora, José? Como não tenho muito a falar aq

Fabio 7 Oct 23, 2021
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Hzzone 1.4k Jan 07, 2023
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021
Fully-automated scripts for collecting AI-related papers

AI-Paper-collector Fully-automated scripts for collecting AI-related papers List of Conferences to crawel ACL: 21-19 (including findings) EMNLP: 21-19

Gordon Lee 776 Jan 08, 2023
Use deep learning, genetic programming and other methods to predict stock and market movements

StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both

Linda MacPhee-Cobb 386 Jan 03, 2023
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022