Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Overview

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Overview

  • Kalman Filter requires the true parameters of the model and solves optimal state estimation recursively. Expectation Maximization (EM) algorithm is applicable for estimating the parameters of the model that are not available before Kalman filtering, which is EM-KF algorithm.
  • To improve the preciseness of EM-KF algorithm, the author presents a state estimation method by combining the Long-Short Term Memory network (LSTM), Transformer and EM-KF algorithm in the framework of Encoder-Decoder in Sequence to Sequence (seq2seq).
  • Simulation on a linear mobile robot model demonstrates that the new method is more accurate.
  • Please read our paper on arXiv: Incorporating Transformer and LSTM to Kalman Filter with EM algorithm for state estimation, for understanding the details w.r.t. theoretical analysis and experiment in our method.

Usage

python main.py

Requirements

The code has been tested running under Python3, with package PyTorch, NumPy, Matplotlib, PyKalman and their dependencies installed.

Methodology

We proposed encoder-decoder framework in seq2seq for state estimation, that state estimation is equivalent to encode and decode observation.

  1. Previous works incorporating LSTM to KF, are adopting LSTM encoder and KF decoder. We proposed LSTM-KF adopting LSTM encoder and EM-KF decoder.
  2. Before EM-KF decoder, replace LSTM encoder by Transformer encoder, we call this Transformer-KF.
  3. Integrating Transformer and LSTM, we call this TL-KF.

Integrating Transformer and LSTM to encode observation before filtering, makes it easier for EM algorithm to estimate parameters.

Conclusions

  1. Combining Transformer and LSTM as an encoder-decoder framework for observation, can depict state more effectively, attenuate noise interference, and weaken the assumption of Markov property of states, and conditional independence of observations. This can enhance the preciseness and robustness of state estimation.
  2. Transformer, based on multi-head self attention and residual connection, can capture long-term dependency, while LSTM-encoder can model time-series. TL-KF, a combination of Transformer, LSTM and EM-KF, is precise for state estimation in systems with unknown parameters.
  3. Kalman smoother can ameliorate Kalman filter, but in TL-KF, filtering is precise enough. Therefore, after offline training for parameter estimation, KF for online estimation can be adopted.

Citation

@article{shi2021kalman,
    author={Zhuangwei Shi},
    title={Incorporating Transformer and LSTM to Kalman Filter with EM algorithm for state estimation},
    journal={arXiv preprint arXiv:2105.00250},
    year={2021},
}
Owner
zshicode
Look at the stars, look how they shine for you.
zshicode
DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

DFFNet Paper DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation. Xiangyan Tang, Wenxuan Tu, Keqiu Li, J

4 Sep 23, 2022
generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search

generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search This repository contains single-threaded TreeMesh code. I'm Hua Tong, a senior stu

Hua Tong 18 Sep 21, 2022
Official repository for the paper "Self-Supervised Models are Continual Learners" (CVPR 2022)

Self-Supervised Models are Continual Learners This is the official repository for the paper: Self-Supervised Models are Continual Learners Enrico Fini

Enrico Fini 73 Dec 18, 2022
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions This is the official repository of PRIME, the data agumentation method introduced i

Apostolos Modas 34 Oct 30, 2022
Streamlit tool to explore coco datasets

What is this This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate impo

Jakub Cieslik 75 Dec 16, 2022
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022