A PyTorch version of You Only Look at One-level Feature object detector

Overview

PyTorch_YOLOF

A PyTorch version of You Only Look at One-level Feature object detector.

The input image must be resized to have their shorter side being 800 and their longer side less or equal to 1333.

During reproducing the YOLOF, I found many tricks used in YOLOF but the baseline RetinaNet dosen't use those tricks. For example, YOLOF takes advantage of RandomShift, CTR_CLAMP, large learning rate, big batchsize(like 64), negative prediction threshold. Is it really fair that YOLOF use these tricks to compare with RetinaNet?

In a other word, whether the YOLOF can still work without those tricks?

Requirements

  • We recommend you to use Anaconda to create a conda environment:
conda create -n yolof python=3.6
  • Then, activate the environment:
conda activate yolof
  • Requirements:
pip install -r requirements.txt 

PyTorch >= 1.1.0 and Torchvision >= 0.3.0

Visualize positive sample

You can run following command to visualize positiva sample:

python train.py \
        -d voc \
        --batch_size 2 \
        --root path/to/your/dataset \
        --vis_targets

My Ablation Studies

image mask

  • Backbone: ResNet-50
  • image size: shorter size = 800, longer size <= 1333
  • Batch size: 16
  • lr: 0.01
  • lr of backbone: 0.01
  • SGD with momentum 0.9 and weight decay 1e-4
  • Matcher: IoU Top4 (Different from the official matcher that uses top4 of L1 distance.)
  • epoch: 12 (1x schedule)
  • lr decay: 8, 11
  • augmentation: RandomFlip

We ignore the loss of samples who are not in image.

Method AP AP50 AP75 APs APm APl
w/o mask 28.3 46.7 28.9 13.4 33.4 39.9
w mask 28.4 46.9 29.1 13.5 33.5 39.1

L1 Top4

  • Backbone: ResNet-50
  • image size: shorter size = 800, longer size <= 1333
  • Batch size: 16
  • lr: 0.01
  • lr of backbone: 0.01
  • SGD with momentum 0.9 and weight decay 1e-4
  • epoch: 12 (1x schedule)
  • lr decay: 8, 11
  • augmentation: RandomFlip
  • with image mask

IoU topk: We choose the topK of IoU between anchor boxes and labels as the positive samples.

L1 topk: We choose the topK of L1 distance between anchor boxes and labels as the positive samples.

Method AP AP50 AP75 APs APm APl
IoU Top4 28.4 46.9 29.1 13.5 33.5 39.1
L1 Top4 28.6 46.9 29.4 13.8 34.0 39.0

RandomShift Augmentation

  • Backbone: ResNet-50
  • image size: shorter size = 800, longer size <= 1333
  • Batch size: 16
  • lr: 0.01
  • lr of backbone: 0.01
  • SGD with momentum 0.9 and weight decay 1e-4
  • Matcher: L1 Top4
  • epoch: 12 (1x schedule)
  • lr decay: 8, 11
  • augmentation: RandomFlip
  • with image mask

YOLOF takes advantage of RandomShift augmentation which is not used in RetinaNet.

Method AP AP50 AP75 APs APm APl
w/o RandomShift 28.6 46.9 29.4 13.8 34.0 39.0
w/ RandomShift 29.0 47.3 29.8 14.2 34.2 38.9

Fix a bug in dataloader

  • Backbone: ResNet-50
  • image size: shorter size = 800, longer size <= 1333
  • Batch size: 16
  • lr: 0.01
  • lr of backbone: 0.01
  • SGD with momentum 0.9 and weight decay 1e-4
  • Matcher: L1 Top4
  • epoch: 12 (1x schedule)
  • lr decay: 8, 11
  • augmentation: RandomFlip + RandomShift
  • with image mask

I fixed a bug in dataloader. Specifically, I set the shuffle in dataloader as False ...

Method AP AP50 AP75 APs APm APl
bug 29.0 47.3 29.8 14.2 34.2 38.9
no bug 30.1 49.0 31.0 15.2 36.3 39.8

Ignore samples

  • Backbone: ResNet-50
  • image size: shorter size = 800, longer size <= 1333
  • Batch size: 16
  • lr: 0.01
  • lr of backbone: 0.01
  • SGD with momentum 0.9 and weight decay 1e-4
  • Matcher: L1 Top4
  • epoch: 12 (1x schedule)
  • lr decay: 8, 11
  • augmentation: RandomFlip + RandomShift
  • with image mask

We ignore those negative samples whose IoU with labels are higher the ignore threshold (igt).

Method AP AP50 AP75 APs APm APl
no igt 30.1 49.0 31.0 15.2 36.3 39.8
igt=0.7

Decode boxes

  • Backbone: ResNet-50
  • image size: shorter size = 800, longer size <= 1333
  • Batch size: 16
  • lr: 0.01
  • lr of backbone: 0.01
  • SGD with momentum 0.9 and weight decay 1e-4
  • Matcher: L1 Top4
  • epoch: 12 (1x schedule)
  • lr decay: 8, 11
  • augmentation: RandomFlip + RandomShift
  • with image mask

Method-1: ctr_x = x_anchor + t_x, ctr_y = y_anchor + t_y

Method-2: ctr_x = x_anchor + t_x * w_anchor, ctr_y = y_anchor + t_y * h_anchor

The Method-2 is following the operation used in YOLOF.

Method AP AP50 AP75 APs APm APl
Method-1
Method-2

Train

sh train.sh

You can change the configurations of train.sh.

If you just want to check which anchor box is assigned to the positive sample, you can run:

python train.py --cuda -d voc --batch_size 8 --vis_targets

According to your own situation, you can make necessary adjustments to the above run commands

Test

python test.py -d [select a dataset: voc or coco] \
               --cuda \
               -v [select a model] \
               --weight [ Please input the path to model dir. ] \
               --img_size 800 \
               --root path/to/dataset/ \
               --show

You can run the above command to visualize the detection results on the dataset.

You might also like...
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

 You Only 👀 One Sequence
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Comments
  • fix typo

    fix typo

    When I run the eval process on VOC dataset, an error occurs:

    Traceback (most recent call last):
      File "eval.py", line 126, in <module>
        voc_test(model, data_dir, device, transform)
      File "eval.py", line 42, in voc_test
        display=True)
    TypeError: __init__() got an unexpected keyword argument 'data_root'
    

    I discovered that this was due to a typo and simply fixed it. Everything is going well now.

    opened by guohanli 1
  • 标签生成函数写得有问题

    标签生成函数写得有问题

    源码中的标签生成逻辑是: 1.利用预测框与gt的l1距离筛选出topk个锚点,再利用锚点与gt的l1距离筛选出topk个锚点,将之作为预选正例锚点。 2.将预选正例锚点依据iou与gt匹配,滤除与锚点iou小于0.15的预选正例锚点 3.将gt与预测框iou<=0.7的预测框对应锚点设置为负例锚点 (而您只用了锚点,没有预选,也没用预测框)

    opened by Mr-Z-NewStar 11
Owner
Jianhua Yang
I love anime!!I love ACG!! The universe is so big,I want to fly and wander.
Jianhua Yang
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"

Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E

Tauhid Khan 15 Dec 10, 2022
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
DUE: End-to-End Document Understanding Benchmark

This is the repository that provide tools to download data, reproduce the baseline results and evaluation. What can you achieve with this guide Based

21 Dec 29, 2022
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
Code for our paper "Interactive Analysis of CNN Robustness"

Perturber Code for our paper "Interactive Analysis of CNN Robustness" Datasets Feature visualizations: Google Drive Fine-tuning checkpoints as saved m

Stefan Sietzen 0 Aug 17, 2021
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022