JAX + dataclasses

Overview

jax_dataclasses

build mypy lint codecov

jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for:

  • Pytree registration. This allows dataclasses to be used at API boundaries in JAX. (necessary for function transformations, JIT, etc)
  • Serialization via flax.serialization.

Notably, jax_dataclasses is designed to work seamlessly with static analysis, including tools like mypy and jedi.

Heavily influenced by some great existing work; see Alternatives for comparisons.

Installation

pip install jax_dataclasses

Core interface

jax_dataclasses is meant to provide a drop-in replacement for dataclasses.dataclass:

  • jax_dataclasses.pytree_dataclass has the same interface as dataclasses.dataclass, but also registers the target class as a pytree container.
  • jax_dataclasses.static_field has the same interface as dataclasses.field, but will also mark the field as static. In a pytree node, static fields will be treated as part of the treedef instead of as a child of the node; all fields that are not explicitly marked static should contain arrays or child nodes.

We also provide several aliases: jax_dataclasses.[field, asdict, astuples, is_dataclass, replace] are all identical to their counterparts in the standard dataclasses library.

Mutations

All dataclasses are automatically marked as frozen and thus immutable (even when no frozen= parameter is passed in). To make changes to nested structures easier, we provide an interface that will (a) make a copy of a pytree and (b) return a context in which any of that copy's contained dataclasses are temporarily mutable:

from jax import numpy as jnp
import jax_dataclasses

@jax_dataclasses.pytree_dataclass
class Node:
  child: jnp.ndarray

obj = Node(child=jnp.zeros(3))

with jax_dataclasses.copy_and_mutate(obj) as obj_updated:
  # Make mutations to the dataclass. This is primarily useful for nested
  # dataclasses.
  #
  # Also does input validation: if the treedef, leaf shapes, or dtypes of `obj`
  # and `obj_updated` don't match, an AssertionError will be raised.
  # This can be disabled with a `validate=False` argument.
  obj_updated.child = jnp.ones(3)

print(obj)
print(obj_updated)

Alternatives

A few other solutions exist for automatically integrating dataclass-style objects into pytree structures. Great ones include: chex.dataclass, flax.struct, and tjax.dataclass. These all influenced this library.

The main differentiators of jax_dataclasses are:

  • Static analysis support. Libraries like dataclasses and attrs rely on tooling-specific custom plugins for static analysis, which don't exist for chex or flax. tjax has a custom mypy plugin to enable type checking, but isn't supported by other tools. Because @jax_dataclasses.pytree_dataclass has the same API as @dataclasses.dataclass, it can include pytree registration behavior at runtime while being treated as the standard decorator during static analysis. This means that all static checkers, language servers, and autocomplete engines that support the standard dataclasses library should work out of the box with jax_dataclasses.

  • Nested dataclasses. Making replacements/modifications in deeply nested dataclasses is generally very frustrating. The three alternatives all introduce a .replace(self, ...) method to dataclasses that's a bit more convenient than the traditional dataclasses.replace(obj, ...) API for shallow changes, but still becomes really cumbersome to use when dataclasses are nested. jax_dataclasses.copy_and_mutate() is introduced to address this.

  • Static field support. Parameters that should not be traced in JAX should be marked as static. This is supported in flax, tjax, and jax_dataclasses, but not chex.

  • Serialization. When working with flax, being able to serialize dataclasses is really handy. This is supported in flax.struct (naturally) and jax_dataclasses, but not chex or tjax.

Misc

This code was originally written for and factored out of jaxfg, where Nick Heppert provided valuable feedback!

Comments
  • Fix infinite loop for cycles in pytrees

    Fix infinite loop for cycles in pytrees

    I have a rather big dataclass to describe a robot model, that includes a graph of links and a list of joints. Each node of the graph references the parent link and all the child links. Each joint object references its parent and child links.

    When I try to copy_and_mutate any of these objects, maybe due to all this nesting, an infinite loop occurs. I suspect that the existing logic tries to unfreeze all the leafs of the pytree, but the high interconnection and the properties of mutable Python types lead to a never ending unfreezing process.

    This PR addresses this edge case by storing the list of IDs of objects already unfreezed. It solves my problem, and it should not add any noticeable performance degradation.

    cc @brentyi

    opened by diegoferigo 10
  • Delayed initialisation of static fields

    Delayed initialisation of static fields

    First of all, thank you for the amazing library! I have recently discovered jax_dataclasses and I have decided to port my messy JAX functional code to a more organised object-oriented code based on jax_dataclasses.

    In my application, I have some derived quantities of the attributes of the dataclass that are static values used to determine the shape of tensors during JIT compilation. I would like to include them as attribute of the dataclass, but I'm getting an error and I would like to know if there is workaround.

    Here is a simple example, where the attribute _sum is a derived static field that depends on the constant value of the array a.

    import jax
    import jax.numpy as jnp
    import jax_dataclasses as jdc
    
    @jdc.pytree_dataclass()
    class PyTreeDataclass:
        a: jnp.ndarray
        _sum: int = jdc.static_field(init=False, repr=False)
    
        def __post_init__(self):
            object.__setattr__(self, "_sum", self.a.sum().item())
    
    def print_pytree(obj):
        print(obj._sum)
    
    obj = PyTreeDataclass(jnp.arange(4))
    print_pytree(obj)
    jax.jit(print_pytree)(obj)
    

    The non-jitted version works, but when print_pytree is jitted I get the following error.

    File "jax_dataclasses_issue.py", line 14, in __post_init__
        object.__setattr__(self, "_sum", self.a.sum().item())
    AttributeError: 'bool' object has no attribute 'sum'
    

    Is there a way to compute in the __post_init__ the value of static fields not initialized in __init__ that depend on jnp.ndarray attributes of the dataclass?

    opened by lucagrementieri 4
  • `jax.tree_leaves` is deprecated

    `jax.tree_leaves` is deprecated

    The file jax_dataclasses/_copy_and_mutate.py raises many warnings complaining a deprecated function.

    FutureWarning: jax.tree_leaves is deprecated, and will be removed in a future release. Use jax.tree_util.tree_leaves instead.
    
    opened by lucagrementieri 1
  • Use jaxtyping to enrich type annotations

    Use jaxtyping to enrich type annotations

    I just discovered the jaxtyping library and I think it could be an interesting alternative to the current typing system proposed by jax_dataclasses.

    jaxtyping supports variable-size axes and symbolic expressions in terms of other variable-size axes, see https://github.com/google/jaxtyping/blob/main/API.md and it has very few requirements.

    Do you think that it could be added to jax_dataclasses?

    opened by lucagrementieri 4
  • Serialization of static fields?

    Serialization of static fields?

    Thanks for the handy library!

    I have a pytree_dataclass that contains a few static_fields that I would like to have serialized by the facilities in flax.serialize. I noticed that jax_dataclasses.asdict handles these, but that flax.serialization.to_state_dict and flax.serialization.to_bytes both ignore them. What is the correct way (if any) to have these fields included in flax's serialization? Should I be using another technique?

    import jax_dataclasses as jdc
    from jax import numpy as jnp
    import flax.serialization as fs
    
    
    @jdc.pytree_dataclass
    class Demo:
        a: jnp.ndarray = jnp.ones(3)
        b: bool = jdc.static_field(default=False)
    
    
    demo = Demo()
    print(f'{jdc.asdict(demo) = }')
    print(f'{fs.to_state_dict(demo) = }')
    print(f'{fs.from_bytes(Demo, fs.to_bytes(demo)) = }')
    
    # jdc.asdict(demo) = {'a': array([1., 1., 1.]), 'b': False}
    # fs.to_state_dict(demo) = {'a': DeviceArray([1., 1., 1.], dtype=float64)}
    # fs.from_bytes(Demo, fs.to_bytes(demo)) = {'a': array([1., 1., 1.])}
    

    Thanks in advance!

    opened by erdmann 3
Releases(v1.5.1)
Owner
Brent Yi
Brent Yi
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix

Dan Kondratyuk 1.2k Dec 26, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
This repository contains the source code for the paper First Order Motion Model for Image Animation

!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s

13k Jan 09, 2023
Confident Semantic Ranking Loss for Part Parsing

Confident Semantic Ranking Loss for Part Parsing

Jiachen Xu 5 Oct 22, 2022
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages

NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages. This project was supported by lacuna-fund initiatives. Jump straight to one of the sections below, or jus

Hausa Natural Language Processing 14 Dec 20, 2022
DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

AlexZou 72 Dec 13, 2022
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022