BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

Overview

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting

Updated on December 10, 2021 (Release all dataset(2021 videos))

Updated on June 06, 2021 (Added evaluation metric)

Released on May 26, 2021

Description

YouTube Demo | Homepage | Downloads(Google Drive) Downloads(Baidu Drive)(password:go10) | Paper

We create a new large-scale benchmark dataset named Bilingual, Open World Video Text(BOVText), the first large-scale and multilingual benchmark for video text spotting in a variety of scenarios. All data are collected from KuaiShou and YouTube

There are mainly three features for BOVText:

  • Large-Scale: we provide 2,000+ videos with more than 1,750,000 frame images, four times larger than the existing largest dataset for text in videos.
  • Open Scenario:BOVText covers 30+ open categories with a wide selection of various scenarios, e.g., life vlog, sports news, automatic drive, cartoon, etc. Besides, caption text and scene text are separately tagged for the two different representational meanings in the video. The former represents more theme information, and the latter is the scene information.
  • Bilingual:BOVText provides Bilingual text annotation to promote multiple cultures live and communication.

Tasks and Metrics

The proposed BOVText support four task(text detection, recognition, tracking, spotting), but mainly includes two tasks:

  • Video Frames Detection.
  • Video Frames Recognition.
  • Video Text Tracking.
  • End to End Text Spotting in Videos.

MOTP (Multiple Object Tracking Precision)[1], MOTA (Multiple Object Tracking Accuracy) and IDF1[3,4] as the three important metrics are used to evaluate task1 (text tracking) for MMVText. In particular, we make use of the publicly available py-motmetrics library (https://github.com/cheind/py-motmetrics) for the establishment of the evaluation metric.

Word recognition evaluation is case-insensitive, and accent-insensitive. The transcription '###' or "#1" is special, as it is used to define text areas that are unreadable. During the evaluation, such areas will not be taken into account: a method will not be penalised if it does not detect these words, while a method that detects them will not get any better score.

Task 3 for Text Tracking Evaluation

The objective of this task is to obtain the location of words in the video in terms of their affine bounding boxes. The task requires that words are both localised correctly in every frame and tracked correctly over the video sequence. Please output the json file as following:

Output
.
├-Cls10_Program_Cls10_Program_video11.json
│-Cls10_Program_Cls10_Program_video12.json
│-Cls10_Program_Cls10_Program_video13.json
├-Cls10_Program_Cls10_Program_video14.json
│-Cls10_Program_Cls10_Program_video15.json
│-Cls10_Program_Cls10_Program_video16.json
│-Cls11_Movie_Cls11_Movie_video17.json
│-Cls11_Movie_Cls11_Movie_video18.json
│-Cls11_Movie_Cls11_Movie_video19.json
│-Cls11_Movie_Cls11_Movie_video20.json
│-Cls11_Movie_Cls11_Movie_video21.json
│-...


And then cd Evaluation_Protocol/Task1_VideoTextTracking, run following script:

python evaluation.py --groundtruths ./Test/Annotation --tests ./output

Task 4 for Text Spotting Evaluation

Please output the json file like task 3.

cd Evaluation_Protocol/Task2_VideoTextSpotting, run following script:

python evaluation.py --groundtruths ./Test/Annotation --tests ./output

Ground Truth (GT) Format and Downloads

We create a single JSON file for each video in the dataset to store the ground truth in a structured format, following the naming convention: gt_[frame_id], where frame_id refers to the index of the video frame in the video

In a JSON file, each gt_[frame_id] corresponds to a list, where each line in the list correspond to one word in the image and gives its bounding box coordinates, transcription, text type(caption or scene text) and tracking ID, in the following format:

{

“frame_1”:  
            [
			{
				"points": [x1, y1, x2, y2, x3, y3, x4, y4],
				“tracking ID”: "1" ,
				“transcription”: "###",
				“category”: title/caption/scene text,
				“language”: Chinese/English,
				“ID_transcription“:  complete words for the whole trajectory
			},

               …

            {
				"points": [x1, y1, x2, y2, x3, y3, x4, y4],
				“tracking ID”: "#" ,
				“transcription”: "###",
				“category”: title/caption/scene text,
				“language”: Chinese/English,
				“ID_transcription“:  complete words for the whole trajectory
			}
			],

“frame_2”:  
            [
			{
				"points": [x1, y1, x2, y2, x3, y3, x4, y4],
				“tracking ID”: "1" ,
				“transcription”: "###",
				“category”: title/caption/scene text,
				“language”: Chinese/English,
				“ID_transcription“:  complete words for the whole trajectory
			},

               …

            {
				"points": [x1, y1, x2, y2, x3, y3, x4, y4],
				“tracking ID”: "#" ,
				“transcription”: "###",
				“category”: title/caption/scene text,
				“language”: Chinese/English,
				“ID_transcription“:  complete words for the whole trajectory
			}
			],

……

}

Downloads

Training data and the test set can be found from Downloads(Google Drive) Downloads(Baidu Drive)(password:go10).

Table Ranking

Important Announcements: we expand the data size from 1,850 videos to 2,021 videos, causing the performance difference between arxiv paper and the NeurIPS version. Therefore, please refer to the latest arXiv paper, while existing ambiguity.

</tbody>
Method Text Tracking Performance/% End to End Video Text Spotting/% Published at
MOTA MOTP IDP IDR IDF1 MOTA MOTP IDP IDR IDF1
EAST+CRNN -21.6 75.8 29.9 26.5 28.1 -79.3 76.3 6.8 6.9 6.8 -
TransVTSpotter 68.2 82.1 71.0 59.7 64.7 -1.4 82.0 43.6 38.4 40.8 -

Maintenance Plan and Goal

The author will plays an active participant in the video text field and maintaining the dataset at least before 2023 years. And the maintenance plan as the following:

  • Merging and releasing the whole dataset after further review. (Around before November, 2021)
  • Updating evaluation guidance and script code for four tasks(detection, tracking, recognition, and spotting). (Around before November, 2021)
  • Hosting a competition concerning our work for promotional and publicity. (Around before March,2022)

More video-and-language tasks will be supported in our dataset:

  • Text-based Video Retrieval[5] (Around before March,2022)
  • Text-based Video Caption[6] (Around before September,2022)
  • Text-based VQA[7][8] (TED)

TodoList

  • update evaluation metric
  • update data and annotation link
  • update evaluation guidance
  • update Baseline(TransVTSpotter)
  • ...

Citation

@article{wu2021opentext,
  title={A Bilingual, OpenWorld Video Text Dataset and End-to-end Video Text Spotter with Transformer},
  author={Weijia Wu, Debing Zhang, Yuanqiang Cai, Sibo Wang, Jiahong Li, Zhuang Li, Yejun Tang, Hong Zhou},
  journal={35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks},
  year={2021}
}

Organization

Affiliations: Zhejiang University, MMU of Kuaishou Technology

Authors: Weijia Wu(Zhejiang University), Debing Zhang(Kuaishou Technology)

Feedback

Suggestions and opinions of this dataset (both positive and negative) are greatly welcome. Please contact the authors by sending email to [email protected].

License and Copyright

The project is open source under CC-by 4.0 license (see the LICENSE file).

Only for research purpose usage, it is not allowed for commercial purpose usage.

The videos were partially downloaded from YouTube and some may be subject to copyright. We don't own the copyright of those videos and only provide them for non-commercial research purposes only. For each video from YouTube, while we tried to identify video that are licensed under a Creative Commons Attribution license, we make no representations or warranties regarding the license status of each video and you should verify the license for each image yourself.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 License.

References

[1] Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers, D., Reid, I., Roth, S., Schindler, K., & Leal-Taixe, L. (2019). CVPR19 Tracking and Detection Challenge: How crowded can it get?. arXiv preprint arXiv:1906.04567.

[2] Bernardin, K. & Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. Image and Video Processing, 2008(1):1-10, 2008.

[3] Ristani, E., Solera, F., Zou, R., Cucchiara, R. & Tomasi, C. Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking. In ECCV workshop on Benchmarking Multi-Target Tracking, 2016.

[4] Li, Y., Huang, C. & Nevatia, R. Learning to associate: HybridBoosted multi-target tracker for crowded scene. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2009.

[5] Anand Mishra, Karteek Alahari, and CV Jawahar. Image retrieval using textual cues. In Proceedings of the IEEE International Conference on Computer Vision, pages 3040–3047, 2013.

[6] Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: a dataset for image captioning with reading comprehension. In European Conference on Computer Vision, pages 742–758. Springer, 2020.

[7] Minesh Mathew, Dimosthenis Karatzas, C. V. Jawahar, "DocVQA: A Dataset for VQA on Document Images", arXiv:2007.00398 [cs.CV], WACV 2021

[8] Minesh Mathew, Ruben Tito, Dimosthenis Karatzas, R. Manmatha, C.V. Jawahar, "Document Visual Question Answering Challenge 2020", arXiv:2008.08899 [cs.CV], DAS 2020

Owner
weijiawu
computer version, OCR I am looking for a research intern or visiting chance.
weijiawu
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
BackgroundRemover lets you Remove Background from images and video with a simple command line interface

BackgroundRemover BackgroundRemover is a command line tool to remove background from video and image, made by nadermx to power https://BackgroundRemov

Johnathan Nader 1.7k Dec 30, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''

Wanglong Lu 28 Oct 29, 2022
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
Cross-view Transformers for real-time Map-view Semantic Segmentation (CVPR 2022 Oral)

Cross View Transformers This repository contains the source code and data for our paper: Cross-view Transformers for real-time Map-view Semantic Segme

Brady Zhou 363 Dec 25, 2022
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022
TDN: Temporal Difference Networks for Efficient Action Recognition

TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).

Multimedia Computing Group, Nanjing University 326 Dec 13, 2022
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
Sharpness-Aware Minimization for Efficiently Improving Generalization

Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim

Sayak Paul 54 Dec 08, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model

Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for

Yash 2 Apr 07, 2022