We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

Overview

HuggingMolecules

License

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-trained models.

Quick tour

To quickly fine-tune a model on a dataset using the pytorch lightning package follow the below example based on the MAT model and the freesolv dataset:

from huggingmolecules import MatModel, MatFeaturizer

# The following import works only from the source code directory:
from experiments.src import TrainingModule, get_data_loaders

from torch.nn import MSELoss
from torch.optim import Adam

from pytorch_lightning import Trainer
from pytorch_lightning.metrics import MeanSquaredError

# Build and load the pre-trained model and the appropriate featurizer:
model = MatModel.from_pretrained('mat_masking_20M')
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')

# Build the pytorch lightning training module:
pl_module = TrainingModule(model,
                           loss_fn=MSELoss(),
                           metric_cls=MeanSquaredError,
                           optimizer=Adam(model.parameters()))

# Build the data loader for the freesolv dataset:
train_dataloader, _, _ = get_data_loaders(featurizer,
                                          batch_size=32,
                                          task_name='ADME',
                                          dataset_name='hydrationfreeenergy_freesolv')

# Build the pytorch lightning trainer and fine-tune the module on the train dataset:
trainer = Trainer(max_epochs=100)
trainer.fit(pl_module, train_dataloader=train_dataloader)

# Make the prediction for the batch of SMILES strings:
batch = featurizer(['C/C=C/C', '[C]=O'])
output = pl_module.model(batch)

Installation

Create your conda environment and install the rdkit package:

conda create -n huggingmolecules python=3.8.5
conda activate huggingmolecules
conda install -c conda-forge rdkit==2020.09.1

Then install huggingmolecules from the cloned directory:

conda activate huggingmolecules
pip install -e ./src

Project Structure

The project consists of two main modules: src/ and experiments/ modules:

  • The src/ module contains abstract interfaces for pre-trained models along with their implementations based on the pytorch library. This module makes configuring, downloading and running existing models easy and out-of-the-box.
  • The experiments/ module makes use of abstract interfaces defined in the src/ module and implements scripts based on the pytorch lightning package for running various experiments. This module makes training, benchmarking and hyper-tuning of models flawless and easily extensible.

Supported models architectures

Huggingmolecules currently provides the following models architectures:

For ease of benchmarking, we also include wrappers in the experiments/ module for three other models architectures:

The src/ module

The implementations of the models in the src/ module are divided into three modules: configuration, featurization and models module. The relation between these modules is shown on the following examples based on the MAT model:

Configuration examples

from huggingmolecules import MatConfig

# Build the config with default parameters values, 
# except 'd_model' parameter, which is set to 1200:
config = MatConfig(d_model=1200)

# Build the pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')

# Build the pre-defined config with 'init_type' parameter set to 'normal':
config = MatConfig.from_pretrained('mat_masking_20M', init_type='normal')

# Save the pre-defined config with the previous modification:
config.save_to_cache('mat_masking_20M_normal.json')

# Restore the previously saved config:
config = MatConfig.from_pretrained('mat_masking_20M_normal.json')

Featurization examples

from huggingmolecules import MatConfig, MatFeaturizer

# Build the featurizer with pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')
featurizer = MatFeaturizer(config)

# Build the featurizer in one line:
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')

# Encode (featurize) the batch of two SMILES strings: 
batch = featurizer(['C/C=C/C', '[C]=O'])

Models examples

from huggingmolecules import MatConfig, MatFeaturizer, MatModel

# Build the model with the pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')
model = MatModel(config)

# Load the pre-trained weights 
# (which do not include the last layer of the model)
model.load_weights('mat_masking_20M')

# Build the model and load the pre-trained weights in one line:
model = MatModel.from_pretrained('mat_masking_20M')

# Encode (featurize) the batch of two SMILES strings: 
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')
batch = featurizer(['C/C=C/C', '[C]=O'])

# Feed the model with the encoded batch:
output = model(batch)

# Save the weights of the model (usually after the fine-tuning process):
model.save_weights('tuned_mat_masking_20M.pt')

# Load the previously saved weights
# (which now includes all layers of the model):
model.load_weights('tuned_mat_masking_20M.pt')

# Load the previously saved weights, but without 
# the last layer of the model ('generator' in the case of the 'MatModel')
model.load_weights('tuned_mat_masking_20M.pt', excluded=['generator'])

# Build the model and load the previously saved weights:
config = MatConfig.from_pretrained('mat_masking_20M')
model = MatModel.from_pretrained('tuned_mat_masking_20M.pt',
                                 excluded=['generator'],
                                 config=config)

Running tests

To run base tests for src/ module, type:

pytest src/ --ignore=src/tests/downloading/

To additionally run tests for downloading module (which will download all models to your local computer and therefore may be slow), type:

pytest src/tests/downloading

The experiments/ module

Requirements

In addition to dependencies defined in the src/ module, the experiments/ module goes along with few others. To install them, run:

pip install -r experiments/requirements.txt

The following packages are crucial for functioning of the experiments/ module:

Neptune.ai

In addition, we recommend installing the neptune.ai package:

  1. Sign up to neptune.ai at https://neptune.ai/.

  2. Get your Neptune API token (see getting-started for help).

  3. Export your Neptune API token to NEPTUNE_API_TOKEN environment variable.

  4. Install neptune-client: pip install neptune-client.

  5. Enable neptune.ai in the experiments/configs/setup.gin file.

  6. Update neptune.project_name parameters in experiments/configs/bases/*.gin files.

Running scripts:

We recommend running experiments scripts from the source code. For the moment there are three scripts implemented:

  • experiments/scripts/train.py - for training with the pytorch lightning package
  • experiments/scripts/tune_hyper.py - for hyper-parameters tuning with the optuna package
  • experiments/scripts/benchmark.py - for benchmarking based on the hyper-parameters tuning (grid-search)

In general running scripts can be done with the following syntax:

python -m experiments.scripts. /
       -d  / 
       -m  /
       -b 

Then the script .py runs with functions/methods parameters values defined in the following gin-config files:

  1. experiments/configs/bases/.gin
  2. experiments/configs/datasets/.gin
  3. experiments/configs/models/.gin

If the binding flag -b is used, then bindings defined in overrides corresponding bindings defined in above gin-config files.

So for instance, to fine-tune the MAT model (pre-trained on masking_20M task) on the freesolv dataset using GPU 1, simply run:

python -m experiments.scripts.train /
       -d freesolv / 
       -m mat /
       -b model.pretrained_name=\"mat_masking_20M\"#train.gpus=[1]

or equivalently:

python -m experiments.scripts.train /
       -d freesolv / 
       -m mat /
       --model.pretrained_name mat_masking_20M /
       --train.gpus [1]

Local dataset

To use a local dataset, create an appropriate gin-config file in the experiments/configs/datasets directory and specify the data.data_path parameter within. For details see the get_data_split implementation.

Benchmarking

For the moment there is one benchmark available. It works as follows:

  • experiments/scripts/benchmark.py: on the given dataset we fine-tune the given model on 10 learning rates and 6 seeded data splits (60 fine-tunings in total). Then we choose that learning rate that minimizes an averaged (on 6 data splits) validation metric (metric computed on the validation dataset, e.g. RMSE). The result is the averaged value of test metric for the chosen learning rate.

Running a benchmark is essentially the same as running any other script from the experiments/ module. So for instance to benchmark the vanilla MAT model (without pre-training) on the Caco-2 dataset using GPU 0, simply run:

python -m experiments.scripts.benchmark /
       -d caco2 / 
       -m mat /
       --model.pretrained_name None /
       --train.gpus [0]

However, the above script will only perform 60 fine-tunings. It won't compute the final benchmark result. To do that wee need to run:

python -m experiments.scripts.benchmark --results_only /
       -d caco2 / 
       -m mat

The above script won't perform any fine-tuning, but will only compute the benchmark result. If we had neptune enabled in experiments/configs/setup.gin, all data necessary to compute the result will be fetched from the neptune server.

Benchmark results

We performed the benchmark described in Benchmarking as experiments/scripts/benchmark.py for various models architectures and pre-training tasks.

Summary

We report mean/median ranks of tested models across all datasets (both regression and classification ones). For detailed results see Regression and Classification sections.

model mean rank rank std
MAT 200k 5.6 3.5
MAT 2M 5.3 3.4
MAT 20M 4.1 2.2
GROVER Base 3.8 2.7
GROVER Large 3.6 2.4
ChemBERTa 7.4 2.8
MolBERT 5.9 2.9
D-MPNN 6.3 2.3
D-MPNN 2d 6.4 2.0
D-MPNN mc 5.3 2.1

Regression

As the metric we used MAE for QM7 and RMSE for the rest of datasets.

model FreeSolv Caco-2 Clearance QM7 Mean rank
MAT 200k 0.913 ± 0.196 0.405 ± 0.030 0.649 ± 0.341 87.578 ± 15.375 5.25
MAT 2M 0.898 ± 0.165 0.471 ± 0.070 0.655 ± 0.327 81.557 ± 5.088 6.75
MAT 20M 0.854 ± 0.197 0.432 ± 0.034 0.640 ± 0.335 81.797 ± 4.176 5.0
Grover Base 0.917 ± 0.195 0.419 ± 0.029 0.629 ± 0.335 62.266 ± 3.578 3.25
Grover Large 0.950 ± 0.202 0.414 ± 0.041 0.627 ± 0.340 64.941 ± 3.616 2.5
ChemBERTa 1.218 ± 0.245 0.430 ± 0.013 0.647 ± 0.314 177.242 ± 1.819 8.0
MolBERT 1.027 ± 0.244 0.483 ± 0.056 0.633 ± 0.332 177.117 ± 1.799 8.0
Chemprop 1.061 ± 0.168 0.446 ± 0.064 0.628 ± 0.339 74.831 ± 4.792 5.5
Chemprop 2d 1 1.038 ± 0.235 0.454 ± 0.049 0.628 ± 0.336 77.912 ± 10.231 6.0
Chemprop mc 2 0.995 ± 0.136 0.438 ± 0.053 0.627 ± 0.337 75.575 ± 4.683 4.25

1 chemprop with additional rdkit_2d_normalized features generator
2 chemprop with additional morgan_count features generator

Classification

We used ROC AUC as the metric.

model HIA Bioavailability PPBR Tox21 (NR-AR) BBBP Mean rank
MAT 200k 0.943 ± 0.015 0.660 ± 0.052 0.896 ± 0.027 0.775 ± 0.035 0.709 ± 0.022 5.8
MAT 2M 0.941 ± 0.013 0.712 ± 0.076 0.905 ± 0.019 0.779 ± 0.056 0.713 ± 0.022 4.2
MAT 20M 0.935 ± 0.017 0.732 ± 0.082 0.891 ± 0.019 0.779 ± 0.056 0.735 ± 0.006 3.4
Grover Base 0.931 ± 0.021 0.750 ± 0.037 0.901 ± 0.036 0.750 ± 0.085 0.735 ± 0.006 4.0
Grover Large 0.932 ± 0.023 0.747 ± 0.062 0.901 ± 0.033 0.757 ± 0.057 0.757 ± 0.057 4.2
ChemBERTa 0.923 ± 0.032 0.666 ± 0.041 0.869 ± 0.032 0.779 ± 0.044 0.717 ± 0.009 7.0
MolBERT 0.942 ± 0.011 0.737 ± 0.085 0.889 ± 0.039 0.761 ± 0.058 0.742 ± 0.020 4.6
Chemprop 0.924 ± 0.069 0.724 ± 0.064 0.847 ± 0.052 0.766 ± 0.040 0.726 ± 0.008 7.0
Chemprop 2d 0.923 ± 0.015 0.712 ± 0.067 0.874 ± 0.030 0.775 ± 0.041 0.724 ± 0.006 6.8
Chemprop mc 0.924 ± 0.082 0.740 ± 0.060 0.869 ± 0.033 0.772 ± 0.041 0.722 ± 0.008 6.2
Owner
GMUM
Group of Machine Learning Research, Jagiellonian University
GMUM
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Research Unit of Medical Imaging, Physics and Technology 256 Jan 08, 2023
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
Recurrent Scale Approximation (RSA) for Object Detection

Recurrent Scale Approximation (RSA) for Object Detection Codebase for Recurrent Scale Approximation for Object Detection in CNN published at ICCV 2017

Yu Liu (Louis) 239 Dec 28, 2022
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

82 Nov 29, 2022
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022