A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

Overview

OutliersSlidingWindows

A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

Dataset generation

The original datasets, namely Higgs and Cover, are provided (compressed) in the data folder. One can download and preprocess the datasets as follows:

wget https://archive.ics.uci.edu/ml/machine-learning-databases/00280/HIGGS.csv.gz
cat HIGGS.csv.gz | gunzip | cut -d ',' -f 23,24,25,26,27,28,29 > higgs.dat

wget https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz
gunzip covtype.data.gz

The script datasets.sh decompresses the zipped original datasets and generates the artificial datasets used in the paper. In particular, the program InjectOutliers takes a dataset and injects artificial outliers. It takes as an argument:

  • in, the path to the input dataset
  • out, the path to the output file
  • p, the probability with which to inject an outlier after every point
  • r, the scaling factor for the norm of the outlier points
  • d, the dimension of the points

The program GenerateArtificial generates automatically a dataset with points in a unit ball with outliers on the suface of a ball of radius r. It takes as an argument:

  • out, the path to the output file
  • p, the probability with which to inject an outlier
  • r, the radius of the outer ball
  • d, the dimension of the points

Running the experiments

The script exec.sh runs a representative subset of the experiments presented in the paper.

The program Main runs the experiments on the comparison of our k-center algorithm with the sequential ones. It takes as and argument:

  • in, the path to the input dataset
  • out, the path to the output file
  • d, the dimension of the points
  • k, the number of centers
  • z, the number of outliers
  • N, the window size
  • beta, eps, lambda, parameters of our method
  • minDist, maxDist, parameters of our method
  • samp, the number of candidate centers for sampled-charikar
  • doChar, if set to 1 executes charikar, else it is skipped

It outputs, in the folder out/k-cen/, a file with:

  • the first line reporting the parameters of the experiments
  • a line for each of the sampled windows reporting, for each of the four methods, the update times, the query times, the memory usage and the clustering radius.

The program MainLambda runs the experiments on the sensitivity on lambda. It takes as and argument:

  • in, the path to the input dataset
  • out, the path to the output file
  • d, the dimension of the points
  • k, the number of centers
  • z, the number of outliers
  • N, the window size
  • beta, eps, lambda, parameters of our method (lambda unused)
  • minDist, maxDist, parameters of our method
  • doSlow, if set to 1 executes the slowest test, else it is skipped

It outputs, in the folder out/lam/, a file with:

  • the first line reporting the parameters of the experiments
  • a line for each of the sampled windows reporting, for each of the four methods, the update times, the query times, the memory usage due to histograms, the total memory usage and the clustering radius.

The program MainEffDiam runs the experiments on the effective diameter algorithms. It takes as and argument:

  • in, the path to the input dataset
  • out, the path to the output file
  • d, the dimension of the points
  • alpha, fraction fo distances to discard
  • eta, lower bound on ratio between effective diameter and diameter
  • N, the window size
  • beta, eps, lambda, parameters of our method
  • minDist, maxDist, parameters of our method
  • doSeq, if set to 1 executes the sequential method, else it is skipped

It outputs, in the folder out/diam/, a file with:

  • the first line reporting the parameters of the experiments
  • a line for each of the sampled windows reporting, for each of the two methods, the update times, the query times, the memory usage and the effective diameter estimate.
Owner
PaoloPellizzoni
PaoloPellizzoni
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022
Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch.

SE3 Transformer - Pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. May be needed for replicating Alphafold2 resu

Phil Wang 207 Dec 23, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
:fire: 2D and 3D Face alignment library build using pytorch

Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D an

Adrian Bulat 6k Dec 31, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021)

GDN A tensorflow=1.13 implementation of Deconvolutional Networks on Graph Data (NeurIPS 2021) Abstract In this paper, we consider an inverse problem i

4 Sep 13, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022