Video Tokneization
Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation.
Prerequisites (tested under Python 3.8 and CUDA 11.1)
apt-get install ffmpeg
pip install torch==1.8
pip install torchvision
pip install pytorch-lightning
pip install pytorch-lightning-bolts
pip install aniposelib wandb gym test-tube ffmpeg-python matplotlib easydict scikit-learn
Data Preparation
- Make a directory besides this repo and name it
aistplusplus - Download from AIST++ website until it looks like
├── annotations
│ ├── cameras
│ ├── ignore_list.txt
│ ├── keypoints2d
│ ├── keypoints3d
│ ├── motions
│ └── splits
└── video_list.txt
How to run
-
Write one configuration file, e.g.,
configs/tan.yaml. -
Run
python pretrain.py --cfg configs/tan.yamlwith GPU, which will create a folder underlogsfor this run. Folder name specified by theNAMEin configuration file. Then runpython cluster.py --cfg configs/tan.yaml(CPU-only) and check results indemo.ipynb. -
Or you can download and unzip my training result into
logsfolder from here.
