A simple, fully convolutional model for real-time instance segmentation.

Overview

You Only Look At CoefficienTs

    ██╗   ██╗ ██████╗ ██╗      █████╗  ██████╗████████╗
    ╚██╗ ██╔╝██╔═══██╗██║     ██╔══██╗██╔════╝╚══██╔══╝
     ╚████╔╝ ██║   ██║██║     ███████║██║        ██║   
      ╚██╔╝  ██║   ██║██║     ██╔══██║██║        ██║   
       ██║   ╚██████╔╝███████╗██║  ██║╚██████╗   ██║   
       ╚═╝    ╚═════╝ ╚══════╝╚═╝  ╚═╝ ╚═════╝   ╚═╝ 

A simple, fully convolutional model for real-time instance segmentation. This is the code for our papers:

YOLACT++ (v1.2) released! (Changelog)

YOLACT++'s resnet50 model runs at 33.5 fps on a Titan Xp and achieves 34.1 mAP on COCO's test-dev (check out our journal paper here).

In order to use YOLACT++, make sure you compile the DCNv2 code. (See Installation)

For a real-time demo, check out our ICCV video:

IMAGE ALT TEXT HERE

Some examples from our YOLACT base model (33.5 fps on a Titan Xp and 29.8 mAP on COCO's test-dev):

Example 0

Example 1

Example 2

Installation

  • Clone this repository and enter it:
    git clone https://github.com/dbolya/yolact.git
    cd yolact
  • Set up the environment using one of the following methods:
    • Using Anaconda
      • Run conda env create -f environment.yml
    • Manually with pip
      • Set up a Python3 environment (e.g., using virtenv).
      • Install Pytorch 1.0.1 (or higher) and TorchVision.
      • Install some other packages:
        # Cython needs to be installed before pycocotools
        pip install cython
        pip install opencv-python pillow pycocotools matplotlib 
  • If you'd like to train YOLACT, download the COCO dataset and the 2014/2017 annotations. Note that this script will take a while and dump 21gb of files into ./data/coco.
    sh data/scripts/COCO.sh
  • If you'd like to evaluate YOLACT on test-dev, download test-dev with this script.
    sh data/scripts/COCO_test.sh
  • If you want to use YOLACT++, compile deformable convolutional layers (from DCNv2). Make sure you have the latest CUDA toolkit installed from NVidia's Website.
    cd external/DCNv2
    python setup.py build develop

Evaluation

Here are our YOLACT models (released on April 5th, 2019) along with their FPS on a Titan Xp and mAP on test-dev:

Image Size Backbone FPS mAP Weights
550 Resnet50-FPN 42.5 28.2 yolact_resnet50_54_800000.pth Mirror
550 Darknet53-FPN 40.0 28.7 yolact_darknet53_54_800000.pth Mirror
550 Resnet101-FPN 33.5 29.8 yolact_base_54_800000.pth Mirror
700 Resnet101-FPN 23.6 31.2 yolact_im700_54_800000.pth Mirror

YOLACT++ models (released on December 16th, 2019):

Image Size Backbone FPS mAP Weights
550 Resnet50-FPN 33.5 34.1 yolact_plus_resnet50_54_800000.pth Mirror
550 Resnet101-FPN 27.3 34.6 yolact_plus_base_54_800000.pth Mirror

To evalute the model, put the corresponding weights file in the ./weights directory and run one of the following commands. The name of each config is everything before the numbers in the file name (e.g., yolact_base for yolact_base_54_800000.pth).

Quantitative Results on COCO

# Quantitatively evaluate a trained model on the entire validation set. Make sure you have COCO downloaded as above.
# This should get 29.92 validation mask mAP last time I checked.
python eval.py --trained_model=weights/yolact_base_54_800000.pth

# Output a COCOEval json to submit to the website or to use the run_coco_eval.py script.
# This command will create './results/bbox_detections.json' and './results/mask_detections.json' for detection and instance segmentation respectively.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --output_coco_json

# You can run COCOEval on the files created in the previous command. The performance should match my implementation in eval.py.
python run_coco_eval.py

# To output a coco json file for test-dev, make sure you have test-dev downloaded from above and go
python eval.py --trained_model=weights/yolact_base_54_800000.pth --output_coco_json --dataset=coco2017_testdev_dataset

Qualitative Results on COCO

# Display qualitative results on COCO. From here on I'll use a confidence threshold of 0.15.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --display

Benchmarking on COCO

# Run just the raw model on the first 1k images of the validation set
python eval.py --trained_model=weights/yolact_base_54_800000.pth --benchmark --max_images=1000

Images

# Display qualitative results on the specified image.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --image=my_image.png

# Process an image and save it to another file.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --image=input_image.png:output_image.png

# Process a whole folder of images.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --images=path/to/input/folder:path/to/output/folder

Video

# Display a video in real-time. "--video_multiframe" will process that many frames at once for improved performance.
# If you want, use "--display_fps" to draw the FPS directly on the frame.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=my_video.mp4

# Display a webcam feed in real-time. If you have multiple webcams pass the index of the webcam you want instead of 0.
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=0

# Process a video and save it to another file. This uses the same pipeline as the ones above now, so it's fast!
python eval.py --trained_model=weights/yolact_base_54_800000.pth --score_threshold=0.15 --top_k=15 --video_multiframe=4 --video=input_video.mp4:output_video.mp4

As you can tell, eval.py can do a ton of stuff. Run the --help command to see everything it can do.

python eval.py --help

Training

By default, we train on COCO. Make sure to download the entire dataset using the commands above.

  • To train, grab an imagenet-pretrained model and put it in ./weights.
    • For Resnet101, download resnet101_reducedfc.pth from here.
    • For Resnet50, download resnet50-19c8e357.pth from here.
    • For Darknet53, download darknet53.pth from here.
  • Run one of the training commands below.
    • Note that you can press ctrl+c while training and it will save an *_interrupt.pth file at the current iteration.
    • All weights are saved in the ./weights directory by default with the file name <config>_<epoch>_<iter>.pth.
# Trains using the base config with a batch size of 8 (the default).
python train.py --config=yolact_base_config

# Trains yolact_base_config with a batch_size of 5. For the 550px models, 1 batch takes up around 1.5 gigs of VRAM, so specify accordingly.
python train.py --config=yolact_base_config --batch_size=5

# Resume training yolact_base with a specific weight file and start from the iteration specified in the weight file's name.
python train.py --config=yolact_base_config --resume=weights/yolact_base_10_32100.pth --start_iter=-1

# Use the help option to see a description of all available command line arguments
python train.py --help

Multi-GPU Support

YOLACT now supports multiple GPUs seamlessly during training:

  • Before running any of the scripts, run: export CUDA_VISIBLE_DEVICES=[gpus]
    • Where you should replace [gpus] with a comma separated list of the index of each GPU you want to use (e.g., 0,1,2,3).
    • You should still do this if only using 1 GPU.
    • You can check the indices of your GPUs with nvidia-smi.
  • Then, simply set the batch size to 8*num_gpus with the training commands above. The training script will automatically scale the hyperparameters to the right values.
    • If you have memory to spare you can increase the batch size further, but keep it a multiple of the number of GPUs you're using.
    • If you want to allocate the images per GPU specific for different GPUs, you can use --batch_alloc=[alloc] where [alloc] is a comma seprated list containing the number of images on each GPU. This must sum to batch_size.

Logging

YOLACT now logs training and validation information by default. You can disable this with --no_log. A guide on how to visualize these logs is coming soon, but now you can look at LogVizualizer in utils/logger.py for help.

Pascal SBD

We also include a config for training on Pascal SBD annotations (for rapid experimentation or comparing with other methods). To train on Pascal SBD, proceed with the following steps:

  1. Download the dataset from here. It's the first link in the top "Overview" section (and the file is called benchmark.tgz).
  2. Extract the dataset somewhere. In the dataset there should be a folder called dataset/img. Create the directory ./data/sbd (where . is YOLACT's root) and copy dataset/img to ./data/sbd/img.
  3. Download the COCO-style annotations from here.
  4. Extract the annotations into ./data/sbd/.
  5. Now you can train using --config=yolact_resnet50_pascal_config. Check that config to see how to extend it to other models.

I will automate this all with a script soon, don't worry. Also, if you want the script I used to convert the annotations, I put it in ./scripts/convert_sbd.py, but you'll have to check how it works to be able to use it because I don't actually remember at this point.

If you want to verify our results, you can download our yolact_resnet50_pascal_config weights from here. This model should get 72.3 mask AP_50 and 56.2 mask AP_70. Note that the "all" AP isn't the same as the "vol" AP reported in others papers for pascal (they use an averages of the thresholds from 0.1 - 0.9 in increments of 0.1 instead of what COCO uses).

Custom Datasets

You can also train on your own dataset by following these steps:

  • Create a COCO-style Object Detection JSON annotation file for your dataset. The specification for this can be found here. Note that we don't use some fields, so the following may be omitted:
    • info
    • liscense
    • Under image: license, flickr_url, coco_url, date_captured
    • categories (we use our own format for categories, see below)
  • Create a definition for your dataset under dataset_base in data/config.py (see the comments in dataset_base for an explanation of each field):
my_custom_dataset = dataset_base.copy({
    'name': 'My Dataset',

    'train_images': 'path_to_training_images',
    'train_info':   'path_to_training_annotation',

    'valid_images': 'path_to_validation_images',
    'valid_info':   'path_to_validation_annotation',

    'has_gt': True,
    'class_names': ('my_class_id_1', 'my_class_id_2', 'my_class_id_3', ...)
})
  • A couple things to note:
    • Class IDs in the annotation file should start at 1 and increase sequentially on the order of class_names. If this isn't the case for your annotation file (like in COCO), see the field label_map in dataset_base.
    • If you do not want to create a validation split, use the same image path and annotations file for validation. By default (see python train.py --help), train.py will output validation mAP for the first 5000 images in the dataset every 2 epochs.
  • Finally, in yolact_base_config in the same file, change the value for 'dataset' to 'my_custom_dataset' or whatever you named the config object above. Then you can use any of the training commands in the previous section.

Creating a Custom Dataset from Scratch

See this nice post by @Amit12690 for tips on how to annotate a custom dataset and prepare it for use with YOLACT.

Citation

If you use YOLACT or this code base in your work, please cite

@inproceedings{yolact-iccv2019,
  author    = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},
  title     = {YOLACT: {Real-time} Instance Segmentation},
  booktitle = {ICCV},
  year      = {2019},
}

For YOLACT++, please cite

@article{yolact-plus-tpami2020,
  author  = {Daniel Bolya and Chong Zhou and Fanyi Xiao and Yong Jae Lee},
  journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title   = {YOLACT++: Better Real-time Instance Segmentation}, 
  year    = {2020},
}

Contact

For questions about our paper or code, please contact Daniel Bolya.

Owner
Daniel Bolya
Daniel Bolya
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Marco Cerliani 212 Dec 30, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
A Flow-based Generative Network for Speech Synthesis

WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo

NVIDIA Corporation 2k Dec 26, 2022
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch

instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi

94 Nov 22, 2022
dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 07, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023