Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Related tags

Deep LearningPSVL
Overview

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL)

This repository is for Zero-shot Natural Language Video Localization. (ICCV 2021, Oral)

We first propose a novel task of zero-shot natural language video localization. The proposed task setup does not require any paired annotation cost for NLVL task but only requires easily available text corpora, off-the-shelf object detector, and a collection of videos to localize. To address the task, we propose a Pseudo-Supervised Video Localization method, called PSVL, that can generate pseudo-supervision for training an NLVL model. Benchmarked on two widely used NLVL datasets, the proposed method exhibits competitive performance and performs on par or outperforms the models trained with stronger supervision.

task_nlvl


Environment

This repository is implemented base on PyTorch with Anaconda.
Refer to below instruction or use Docker (dcahn/psvl:latest).

Get the code

  • Clone this repo with git, please use:
git clone https://github.com/gistvision/PSVL.git
  • Make your own environment (If you use docker envronment, you just clone the code and execute it.)
conda create --name PSVL --file requirements.txt
conda activate PSVL

Working environment

  • RTX2080Ti (11G)
  • Ubuntu 18.04.5
  • pytorch 1.5.1

Download

Dataset & Pretrained model

  • This link is connected for downloading video features used in this paper.
    : After downloading the video feature, you need to set the data path in a config file.

  • This link is connected for downloading pre-trained model.

Evaluating pre-trained models

If you want to evaluate the pre-trained model, you can use below command.

python inference.py --model CrossModalityTwostageAttention --config "YOUR CONFIG PATH" --pre_trained "YOUR MODEL PATH"

Training models from scratch

To train PSVL, run train.py with below command.

# Training from scratch
python train.py --model CrossModalityTwostageAttention --config "YOUR CONFIG PATH"
# Evaluation
python inference.py --model CrossModalityTwostageAttention --config "YOUR CONFIG PATH" --pre_trained "YOUR MODEL PATH"

Lisence

MIT Lisence

Citation

If you use this code, please cite:

@inproceedings{nam2021zero,
  title={Zero-shot Natural Language Video Localization},
  author={Nam, Jinwoo and Ahn, Daechul and Kang, Dongyeop and Ha, Seong Jong and Choi, Jonghyun},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={1470-1479},
  year={2021}
}

Contact

If you have any questions, please send e-mail to me ([email protected], [email protected])

Owner
Computer Vision Lab. @ GIST
Some useful codes for computer vision and machine learning.
Computer Vision Lab. @ GIST
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Implementation of the GBST block from the Charformer paper, in Pytorch

Charformer - Pytorch Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes

Phil Wang 105 Dec 26, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
A curated list of references for MLOps

A curated list of references for MLOps

Larysa Visengeriyeva 9.3k Jan 07, 2023
All-in-one Docker container that allows a user to explore Nautobot in a lab environment.

Nautobot Lab This container is not for production use! Nautobot Lab is an all-in-one Docker container that allows a user to quickly get an instance of

Nautobot 29 Sep 16, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023