Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Overview
Table of Content
  1. Introduction
  2. Getting Started
  3. Experiments

Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images

Recovering the 3D structure of an object from a single image is a challenging task due to its ill-posed nature. One approach is to utilize the plentiful photos of the same object category to learn a strong 3D shape prior for the object. We propose a general framework without symmetry constraint, called LeMul, that effectively Learns from Multi-image datasets for more flexible and reliable unsupervised training of 3D reconstruction networks. It employs loose shape and texture consistency losses based on component swapping across views.

Details of the model architecture and experimental results can be found in our following paper.

@inproceedings{ho2021lemul,
      title={Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images},
      author={Long-Nhat Ho and Anh Tran and Quynh Phung and Minh Hoai},
      booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
      year={2021}
}

Please CITE our paper whenever our model implementation is used to help produce published results or incorporated into other software.

Getting Started

Datasets

  1. CelebA face dataset. Please download the original images (img_celeba.7z) from their website and run celeba_crop.py in data/ to crop the images.
  2. Synthetic face dataset generated using Basel Face Model. This can be downloaded using the script download_synface.sh provided in data/.
  3. Cat face dataset composed of Cat Head Dataset and Oxford-IIIT Pet Dataset (license). This can be downloaded using the script download_cat.sh provided in data/.
  4. CASIA WebFace dataset. You can download the original dataset from backup links such as the Google Drive link on this page. Decompress, and run casia_data_split.py in data/ to re-organize the images.

Please remember to cite the corresponding papers if you use these datasets.

Installation:

# clone the repo
git clone https://github.com/VinAIResearch/LeMul.git
cd LeMul

# install dependencies
conda env create -f environment.yml

Experiments

Training and Testing

Check the configuration files in experiments/ and run experiments, eg:

# Training
python run.py --config experiments/train_multi_CASIA.yml --gpu 0 --num_workers 4

# Testing
python run.py --config experiments/test_multi_CASIA.yml --gpu 0 --num_workers 4

Texture fine-tuning

With collection-style datasets such as CASIA, you can fine-tune the texture estimation network after training. Check the configuration file experiments/finetune_CASIA.yml as an example. You can run it with the command:

python run.py --config experiments/finetune_CASIA.yml --gpu 0 --num_workers 4

Pretrained Models

Pretrained models can be found here: Google Drive Please download and place pretrained models in ./pretrained folder.

Demo

After downloading pretrained models and preparing input image folder, you can run demo, eg:

python demo/demo.py --input demo/human_face_cropped --result demo/human_face_results --checkpoint pretrained/casia_checkpoint028.pth

Options:

  • --config path-to-training-config-file.yml: input the config file used in training (recommended)
  • --detect_human_face: enable automatic human face detection and cropping using MTCNN. You need to install facenet-pytorch before using this option. This only works on human face images
  • --gpu: enable GPU
  • --render_video: render 3D animations using neural_renderer (GPU is required)

To replicate the results reported in the paper with the model pretrained on the CASIA dataset, use the --detect_human_face option with images in folder demo/images/human_face and skip that flag with images in demo/images/human_face_cropped.

Owner
VinAI Research
VinAI Research
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022