A mini lib that implements several useful functions binding to PyTorch in C++.

Overview

Torch-gather

A mini library that implements several useful functions binding to PyTorch in C++.

What does gather do? Why do we need it?

When dealing with sequences, a common way of processing the variable lengths is padding them to the max length, which leads to quite a lot redundancies and waste on computing and memory as sequences length varies. So gather just removes their paddings and makes computation without waste of computation resource.

Install

python setup.py install

Docs

Note that all the input tensors should be on cuda device.

  • gather.gathercat(x_padded:torch.FloatTensor, lx:torch.IntTensor)

    Return a concatence of given padded tensor x_padded according to its lengths lx.

    Input:

    x_padded (torch.float): padded tensor of size (N, L, V), where L=max(lx).

    lx (torch.int): lengths of size (N, ).

    Return:

    x_gather (torch.float): the gathered tensor without paddings of size (lx[0]+lx[1]+...+lx[N-1], V)

    Example:

    >>> import torch
    >>> from gather import gathercat
    >>> lx = torch.randint(3, 20, (5, ), dtype=torch.int32, device='cuda')
    >>> x_padded = torch.randn((5, lx.max(), 64), device='cuda')
    >>> x_padded.size(), lx.size()
    (torch.Size([5, 19, 64]), torch.Size([5]))
    >>> x_gather = gathercat(x_padded, lx)
    >>> x_gather.size()
    torch.Size([81, 64])
    # another example, with V=1
    >>> x_padded = torch.tensor([[1., 2., 3.],[1.,2.,0.]], device='cuda').unsqueeze(2)
    >>> lx = torch.tensor([3,2], dtype=torch.int32, device='cuda')
    >>> x_padded
    tensor([[[1.],
            [2.],
            [3.]],
    
            [[1.],
            [2.],
            [0.]]], device='cuda:0')
    >>> lx
    tensor([3, 2], device='cuda:0', dtype=torch.int32)
    >>> gathercat(x_padded, lx)
    tensor([[1.],
            [2.],
            [3.],
            [1.],
            [2.]], device='cuda:0')

    This function is easy to implement with torch python functions like torch.cat(), however, gathercat() is customized for specified tasks, and more efficient.

  • gather.gathersum(xs:torch.FloatTensor, ys:torch.FloatTensor, lx:torch.IntTensor, ly:torch.IntTensor)

    Return a sequence-matched broadcast sum of given paired gathered tensor xs and ys. For a pair of sequences in xs and ys, say xs_i and ys_i, gathersum() broadcast them so that they can be added up. The broadcast step can be understood as (xs_i.unsqueeze(1)+ys_i.unsqueeze(2)).reshape(-1, V) with python and torch.

    Input:

    xs (torch.float): gathered tensor of size (ST, V), where ST=sum(lx).

    ys (torch.float): gathered tensor of size (SU, V), where SU=sum(ly).

    lx (torch.int): lengths of size (N, ). lx[i] denotes length of the $i_{th}$ sequence in xs.

    ly (torch.int): lengths of size (N, ). ly[i] denotes length of the $i_{th}$ sequence in ys.

    Return:

    gathered_sum (torch.float): the gathered sequence-match sum of size (lx[0]ly[0]+lx[1]ly[1]+...+lx[N-1]ly[N-1], V)

    Example:

    >>> import torch
    >>> from gather import gathersum
    >>> N, T, U, V = 5, 4, 4, 3
    >>> lx = torch.randint(1, T, (N, ), dtype=torch.int32, device='cuda')
    >>> ly = torch.randint(1, U, (N, ), dtype=torch.int32, device='cuda')
    >>> xs = torch.randn((lx.sum(), V), device='cuda')
    >>> ys = torch.randn((ly.sum(), V), device='cuda')
    >>> xs.size(), ys.size(), lx.size(), ly.size()
    (torch.Size([11, 3]), torch.Size([10, 3]), torch.Size([5]), torch.Size([5]))
    >>> gathered_sum = gathersum(xs, ys, lx, ly)
    >>> gathered_sum.size()
    torch.Size([20, 3])
    # let's see how the size 20 comes out
    >>> lx.tolist(), ly.tolist()
    ([2, 2, 1, 3, 3], [3, 1, 3, 1, 2])
    # still unclear? Uh, how about this?
    >>> (lx * ly).sum().item()
    20

    This function seems doing something weird. Please refer to the discussion page for a specific usage example.

Reference

  • PyTorch binding refers to the 1ytic/warp-rnnt

  • For the specific usage of these functions, please refer to this discussion.

Owner
maxwellzh
maxwellzh
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
PyTorch implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

Anomaly Transformer in PyTorch This is an implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. This pape

spencerbraun 160 Dec 19, 2022
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Facebook Research 487 Dec 31, 2022
Sionna: An Open-Source Library for Next-Generation Physical Layer Research

Sionna: An Open-Source Library for Next-Generation Physical Layer Research Sionna™ is an open-source Python library for link-level simulations of digi

NVIDIA Research Projects 313 Dec 22, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022
Mercury: easily convert Python notebook to web app and share with others

Mercury Share your Python notebooks with others Easily convert your Python notebooks into interactive web apps by adding parameters in YAML. Simply ad

MLJAR 2.2k Dec 27, 2022
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022