Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Overview

Scribble-Supervised LiDAR Semantic Segmentation

Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL).
Authors: Ozan Unal, Dengxin Dai, Luc Van Gool

Abstract: Densely annotating LiDAR point clouds remains too expensive and time-consuming to keep up with the ever growing volume of data. While current literature focuses on fully-supervised performance, developing efficient methods that take advantage of realistic weak supervision have yet to be explored. In this paper, we propose using scribbles to annotate LiDAR point clouds and release ScribbleKITTI, the first scribble-annotated dataset for LiDAR semantic segmentation. Furthermore, we present a pipeline to reduce the performance gap that arises when using such weak annotations. Our pipeline comprises of three stand-alone contributions that can be combined with any LiDAR semantic segmentation model to achieve up to 95.7% of the fully-supervised performance while using only 8% labeled points.


News

[2022-04] We release our training code with the Cylinder3D backbone.
[2022-03] Our paper is accepted to CVPR 2022 for an ORAL presentation!
[2022-03] We release ScribbleKITTI, the first scribble-annotated dataset for LiDAR semantic segmentation.


ScribbleKITTI

teaser

We annotate the train-split of SemanticKITTI based on KITTI which consists of 10 sequences, 19130 scans, 2349 million points. ScribbleKITTI contains 189 million labeled points corresponding to only 8.06% of the total point count. We choose SemanticKITTI for its current wide use and established benchmark. We retain the same 19 classes to encourage easy transitioning towards research into scribble-supervised LiDAR semantic segmentation.

Our scribble labels can be downloaded here (118.2MB).

Data organization

The data is organized in the format of SemanticKITTI. The dataset can be used with any existing dataloader by changing the label directory from labels to scribbles.

sequences/
    ├── 00/
    │   ├── scribbles/
    │   │     ├ 000000.label
    │   │     └ 000001.label
    ├── 01/
    ├── 02/
    .
    .
    └── 10/

Scribble-Supervised LiDAR Semantic Segmentation

pipeline

We develop a novel learning method for 3D semantic segmentation that directly exploits scribble annotated LiDAR data. We introduce three stand-alone contributions that can be combined with any 3D LiDAR segmentation model: a teacher-student consistency loss on unlabeled points, a self-training scheme designed for outdoor LiDAR scenes, and a novel descriptor that improves pseudo-label quality.

Specifically, we first introduce a weak form of supervision from unlabeled points via a consistency loss. Secondly, we strengthen this supervision by fixing the confident predictions of our model on the unlabeled points and employing self-training with pseudo-labels. The standard self-training strategy is however very prone to confirmation bias due to the long-tailed distribution of classes inherent in autonomous driving scenes and the large variation of point density across different ranges inherent in LiDAR data. To combat these, we develop a class-range-balanced pseudo-labeling strategy to uniformly sample target labels across all classes and ranges. Finally, to improve the quality of our pseudo-labels, we augment the input point cloud by using a novel descriptor that provides each point with the semantic prior about its local surrounding at multiple resolutions.

Putting these two contributions along with the mean teacher framework, our scribble-based pipeline achieves up to 95.7% relative performance of fully supervised training while using only 8% labeled points.

Installation

For the installation, we recommend setting up a virtual environment:

python -m venv ~/venv/scribblekitti
source ~/venv/scribblekitti/bin/activate
pip install -r requirements.txt

Futhermore install the following dependencies:

Data Preparation

Please follow the instructions from SemanticKITTI to download the dataset including the KITTI Odometry point cloud data. Download our scribble annotations and unzip in the same directory. Each sequence in the train-set (00-07, 09-10) should contain the velodyne, labels and scribbles directories.

Move the sequences folder into a new directoy called data/. Alternatively, edit the dataset: root_dir field of each config file to point to the sequences folder.

Training

The training of our method requires three steps as illustrated in the above figure: (1) training, where we utilize the PLS descriptors and the mean teacher framework to generate high quality pseudo-labels; (2) pseudo-labeling, where we fix the trained teacher models predictions in a class-range-balanced manner; (3) distillation, where we train on the generated psuedo-labels.

Step 1 can be trained as follows. The checkpoint for the trained first stage model can be downloaded here. (The resulting model will show slight improvements over the model presented in the paper with 86.38% mIoU on the fully-labeled train-set.)

python train.py --config_path config/training.yaml --dataset_config_path config/semantickitti.yaml

For Step 2, we first need to first save the intermediate results of our trained teacher model.
Warning: This step will initially create a save file training_results.h5 (27GB). This file can be deleted after generating the psuedo-labels.

python save.py --config_path config/training.yaml --dataset_config_path config/semantickitti.yaml --checkpoint_path STEP1/CKPT/PATH --save_dir SAVE/DIR

Next, we find the optimum threshold for each class-annuli pairing and generate pseudo-labels in a class-range balanced manner. The psuedo-labels will be saved in the same root directory as the scribble lables but under a new folder called crb. The generated pseudo-labels from our model can be downloaded here.

python crb.py --config_path config/crb.yaml --dataset_config_path config/semantickitti.yaml --save_dir SAVE/DIR

Step 3 can be trained as follows. The resulting model state_dict can be downloaded here (61.25% mIoU).

python train.py --config_path config/distillation.yaml --dataset_config_path config/semantickitti.yaml

Evaluation

The final model as well as the provided checkpoints for the distillation steps can be evaluated on the SemanticKITTI validation set as follows. Evaluating the model is not neccessary when doing in-house training as the evaluation takes place within the training script after every epoch. The best teacher mIoU is given by the val_best_miou metric in W&B.

python evaluate.py --config_path config/distillation.yaml --dataset_config_path config/semantickitti.yaml --ckpt_path STEP2/CKPT/PATH

Quick Access for Download Links:


Citation

If you use our dataset or our work in your research, please cite:

@InProceedings{Unal_2022_CVPR,
    author    = {Unal, Ozan and Dai, Dengxin and Van Gool, Luc},
    title     = {Scribble-Supervised LiDAR Semantic Segmentation},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year      = {2022},
}

Acknowledgements

We would like to additionally thank the authors the open source codebase Cylinder3D.

[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
Meaningful titles for tabs and PDF downloads! Also supports tab search.

arxiv-utils If you are a researcher that reads a lot on ArXiv, you'll benefit a lot from this web extension. Renames the title of PDF page to the pape

Johnson 174 Dec 20, 2022
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

71 Nov 25, 2022
YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023