Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

Overview

PPO-based Autonomous Navigation for Quadcopters

license

This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous navigation in a corridor environment with a quadcopter. There are blocks having circular opening for the drone to go through for each 4 meters. The expectation is that the agent navigates through these openings without colliding with blocks. This project currently runs only on Windows since Unreal environments were packaged for Windows.

🛠️ Libraries & Tools

Overview

The training environment has 9 sections with different textures and hole positions. The agent starts at these sections randomly. The starting point of the agent is also random within a specific region in the yz-plane.

Observation Space

  • State is in the form of a RGB image taken by the front camera of the agent.
  • Image shape: 50 x 50 x 3

Action Space

  • There are 9 discrete actions.

Environment setup to run the codes

#️⃣ 1. Clone the repository

git clone https://github.com/bilalkabas/PPO-based-Autonomous-Navigation-for-Quadcopters

#️⃣ 2. From Anaconda command prompt, create a new conda environment

I recommend you to use Anaconda or Miniconda to create a virtual environment.

conda create -n ppo_drone python==3.8

#️⃣ 3. Install required libraries

Inside the main directory of the repo

conda activate ppo_drone
pip install -r requirements.txt

#️⃣ 4. (Optional) Install Pytorch for GPU

You must have a CUDA supported NVIDIA GPU.

Details for installation

For this project, I used CUDA 11.0 and the following conda installation command to install Pytorch:

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch

#️⃣ 4. Edit settings.json

Content of the settings.json should be as below:

The setting.json file is located at Documents\AirSim folder.

{
    "SettingsVersion": 1.2,
    "LocalHostIp": "127.0.0.1",
    "SimMode": "Multirotor",
    "ClockSpeed": 20,
    "ViewMode": "SpringArmChase",
    "Vehicles": {
        "drone0": {
            "VehicleType": "SimpleFlight",
            "X": 0.0,
            "Y": 0.0,
            "Z": 0.0,
            "Yaw": 0.0
        }
    },
    "CameraDefaults": {
        "CaptureSettings": [
            {
                "ImageType": 0,
                "Width": 50,
                "Height": 50,
                "FOV_Degrees": 120
            }
        ]
    }
  }

How to run the training?

Make sure you followed the instructions above to setup the environment.

#️⃣ 1. Download the training environment

Go to the releases and download TrainEnv.zip. After downloading completed, extract it.

#️⃣ 2. Now, you can open up environment's executable file and start the training

So, inside the repository

python main.py

How to run the pretrained model?

Make sure you followed the instructions above to setup the environment. To speed up the training, the simulation runs at 20x speed. You may consider to change the "ClockSpeed" parameter in settings.json to 1.

#️⃣ 1. Download the test environment

Go to the releases and download TestEnv.zip. After downloading completed, extract it.

#️⃣ 2. Now, you can open up environment's executable file and run the trained model

So, inside the repository

python policy_run.py

Training results

The trained model in saved_policy folder was trained for 280k steps.

Picture2

Test results

The test environment has different textures and hole positions than that of the training environment. For 100 episodes, the trained model is able to travel 17.5 m on average and passes through 4 holes on average without any collision. The agent can pass through at most 9 holes in test environment without any collision.

Author

License

This project is licensed under the GNU Affero General Public License.

You might also like...
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions. A clean and robust Pytorch implementation of PPO on continuous action space.
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

Comments
  • A warning I met during I perform

    A warning I met during I perform "python policy_run.py"

    I have followed each step as suggested by the readme. However, I encounter the problem as follow:

    WARNING:tornado.general:Connect error on fd 336: WSAECONNREFUSED WARNING:tornado.general:Connect error on fd 336: WSAECONNREFUSED WARNING:tornado.general:Connect error on fd 336: WSAECONNREFUSED WARNING:tornado.general:Connect error on fd 336: WSAECONNREFUSED WARNING:tornado.general:Connect error on fd 336: WSAECONNREFUSED Traceback (most recent call last): File "policy_run.py", line 14, in env = DummyVecEnv([lambda: Monitor( File "E:\Anaconda\envs\PPO_drone\lib\site-packages\stable_baselines3\common\vec_env\dummy_vec_env.py", line 25, in init self.envs = [fn() for fn in env_fns] File "E:\Anaconda\envs\PPO_drone\lib\site-packages\stable_baselines3\common\vec_env\dummy_vec_env.py", line 25, in self.envs = [fn() for fn in env_fns] File "policy_run.py", line 15, in gym.make( File "E:\Anaconda\envs\PPO_drone\lib\site-packages\gym\envs\registration.py", line 235, in make return registry.make(id, **kwargs) File "E:\Anaconda\envs\PPO_drone\lib\site-packages\gym\envs\registration.py", line 129, in make env = spec.make(kwargs) File "E:\Anaconda\envs\PPO_drone\lib\site-packages\gym\envs\registration.py", line 90, in make env = cls(_kwargs) File "E:\Project\PPO_based_ANfQ\PPO-based-Autonomous-Navigation-for-Quadcopters\scripts\airsim_env.py", line 169, in init super(TestEnv, self).init(ip_address, image_shape, env_config) File "E:\Project\PPO_based_ANfQ\PPO-based-Autonomous-Navigation-for-Quadcopters\scripts\airsim_env.py", line 19, in init self.setup_flight() File "E:\Project\PPO_based_ANfQ\PPO-based-Autonomous-Navigation-for-Quadcopters\scripts\airsim_env.py", line 174, in setup_flight super(TestEnv, self).setup_flight() File "E:\Project\PPO_based_ANfQ\PPO-based-Autonomous-Navigation-for-Quadcopters\scripts\airsim_env.py", line 36, in setup_flight self.drone.reset() File "E:\Project\PPO_based_ANfQ\PPO-based-Autonomous-Navigation-for-Quadcopters\scripts\airsim\client.py", line 26, in reset self.client.call('reset') File "E:\Anaconda\envs\PPO_drone\lib\site-packages\msgpackrpc\session.py", line 41, in call return self.send_request(method, args).get() File "E:\Anaconda\envs\PPO_drone\lib\site-packages\msgpackrpc\future.py", line 43, in get raise self._error msgpackrpc.error.TransportError: Retry connection over the limit

    I would be grateful if anyone could tell me how to fix this.

    opened by XiAoSSuper 1
Releases(v1.0.0-windows)
Owner
Bilal Kabas
BSc., Electrical & Electronics Engineering, Undergraduate Researcher: Robotics, Computer Vision, ML & DL
Bilal Kabas
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Collyn O'Kane 37 Dec 22, 2022
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa

Wanyu Du 18 Dec 29, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022
Search and filter videos based on objects that appear in them using convolutional neural networks

Thingscoop: Utility for searching and filtering videos based on their content Description Thingscoop is a command-line utility for analyzing videos se

Anastasis Germanidis 354 Dec 04, 2022
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022