Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

Overview

PPO-based Autonomous Navigation for Quadcopters

license

This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous navigation in a corridor environment with a quadcopter. There are blocks having circular opening for the drone to go through for each 4 meters. The expectation is that the agent navigates through these openings without colliding with blocks. This project currently runs only on Windows since Unreal environments were packaged for Windows.

🛠️ Libraries & Tools

Overview

The training environment has 9 sections with different textures and hole positions. The agent starts at these sections randomly. The starting point of the agent is also random within a specific region in the yz-plane.

Observation Space

  • State is in the form of a RGB image taken by the front camera of the agent.
  • Image shape: 50 x 50 x 3

Action Space

  • There are 9 discrete actions.

Environment setup to run the codes

#️⃣ 1. Clone the repository

git clone https://github.com/bilalkabas/PPO-based-Autonomous-Navigation-for-Quadcopters

#️⃣ 2. From Anaconda command prompt, create a new conda environment

I recommend you to use Anaconda or Miniconda to create a virtual environment.

conda create -n ppo_drone python==3.8

#️⃣ 3. Install required libraries

Inside the main directory of the repo

conda activate ppo_drone
pip install -r requirements.txt

#️⃣ 4. (Optional) Install Pytorch for GPU

You must have a CUDA supported NVIDIA GPU.

Details for installation

For this project, I used CUDA 11.0 and the following conda installation command to install Pytorch:

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch

#️⃣ 4. Edit settings.json

Content of the settings.json should be as below:

The setting.json file is located at Documents\AirSim folder.

{
    "SettingsVersion": 1.2,
    "LocalHostIp": "127.0.0.1",
    "SimMode": "Multirotor",
    "ClockSpeed": 20,
    "ViewMode": "SpringArmChase",
    "Vehicles": {
        "drone0": {
            "VehicleType": "SimpleFlight",
            "X": 0.0,
            "Y": 0.0,
            "Z": 0.0,
            "Yaw": 0.0
        }
    },
    "CameraDefaults": {
        "CaptureSettings": [
            {
                "ImageType": 0,
                "Width": 50,
                "Height": 50,
                "FOV_Degrees": 120
            }
        ]
    }
  }

How to run the training?

Make sure you followed the instructions above to setup the environment.

#️⃣ 1. Download the training environment

Go to the releases and download TrainEnv.zip. After downloading completed, extract it.

#️⃣ 2. Now, you can open up environment's executable file and start the training

So, inside the repository

python main.py

How to run the pretrained model?

Make sure you followed the instructions above to setup the environment. To speed up the training, the simulation runs at 20x speed. You may consider to change the "ClockSpeed" parameter in settings.json to 1.

#️⃣ 1. Download the test environment

Go to the releases and download TestEnv.zip. After downloading completed, extract it.

#️⃣ 2. Now, you can open up environment's executable file and run the trained model

So, inside the repository

python policy_run.py

Training results

The trained model in saved_policy folder was trained for 280k steps.

Picture2

Test results

The test environment has different textures and hole positions than that of the training environment. For 100 episodes, the trained model is able to travel 17.5 m on average and passes through 4 holes on average without any collision. The agent can pass through at most 9 holes in test environment without any collision.

Author

License

This project is licensed under the GNU Affero General Public License.

You might also like...
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Episodic Transformer (E.T.) is a novel attention-based architecture for vision-and-language navigation. E.T. is based on a multimodal transformer that encodes language inputs and the full episode history of visual observations and actions. A clean and robust Pytorch implementation of PPO on continuous action space.
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

Comments
  • A warning I met during I perform

    A warning I met during I perform "python policy_run.py"

    I have followed each step as suggested by the readme. However, I encounter the problem as follow:

    WARNING:tornado.general:Connect error on fd 336: WSAECONNREFUSED WARNING:tornado.general:Connect error on fd 336: WSAECONNREFUSED WARNING:tornado.general:Connect error on fd 336: WSAECONNREFUSED WARNING:tornado.general:Connect error on fd 336: WSAECONNREFUSED WARNING:tornado.general:Connect error on fd 336: WSAECONNREFUSED Traceback (most recent call last): File "policy_run.py", line 14, in env = DummyVecEnv([lambda: Monitor( File "E:\Anaconda\envs\PPO_drone\lib\site-packages\stable_baselines3\common\vec_env\dummy_vec_env.py", line 25, in init self.envs = [fn() for fn in env_fns] File "E:\Anaconda\envs\PPO_drone\lib\site-packages\stable_baselines3\common\vec_env\dummy_vec_env.py", line 25, in self.envs = [fn() for fn in env_fns] File "policy_run.py", line 15, in gym.make( File "E:\Anaconda\envs\PPO_drone\lib\site-packages\gym\envs\registration.py", line 235, in make return registry.make(id, **kwargs) File "E:\Anaconda\envs\PPO_drone\lib\site-packages\gym\envs\registration.py", line 129, in make env = spec.make(kwargs) File "E:\Anaconda\envs\PPO_drone\lib\site-packages\gym\envs\registration.py", line 90, in make env = cls(_kwargs) File "E:\Project\PPO_based_ANfQ\PPO-based-Autonomous-Navigation-for-Quadcopters\scripts\airsim_env.py", line 169, in init super(TestEnv, self).init(ip_address, image_shape, env_config) File "E:\Project\PPO_based_ANfQ\PPO-based-Autonomous-Navigation-for-Quadcopters\scripts\airsim_env.py", line 19, in init self.setup_flight() File "E:\Project\PPO_based_ANfQ\PPO-based-Autonomous-Navigation-for-Quadcopters\scripts\airsim_env.py", line 174, in setup_flight super(TestEnv, self).setup_flight() File "E:\Project\PPO_based_ANfQ\PPO-based-Autonomous-Navigation-for-Quadcopters\scripts\airsim_env.py", line 36, in setup_flight self.drone.reset() File "E:\Project\PPO_based_ANfQ\PPO-based-Autonomous-Navigation-for-Quadcopters\scripts\airsim\client.py", line 26, in reset self.client.call('reset') File "E:\Anaconda\envs\PPO_drone\lib\site-packages\msgpackrpc\session.py", line 41, in call return self.send_request(method, args).get() File "E:\Anaconda\envs\PPO_drone\lib\site-packages\msgpackrpc\future.py", line 43, in get raise self._error msgpackrpc.error.TransportError: Retry connection over the limit

    I would be grateful if anyone could tell me how to fix this.

    opened by XiAoSSuper 1
Releases(v1.0.0-windows)
Owner
Bilal Kabas
BSc., Electrical & Electronics Engineering, Undergraduate Researcher: Robotics, Computer Vision, ML & DL
Bilal Kabas
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

PanopticStudio Toolbox This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data. Note: Sep-21-2020: Curre

335 Jan 09, 2023
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

1.7k Jan 08, 2023
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023
Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021) Paper Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu,

tzt 45 Nov 17, 2022
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
A Python Package for Portfolio Optimization using the Critical Line Algorithm

PyCLA A Python Package for Portfolio Optimization using the Critical Line Algorithm Getting started To use PyCLA, clone the repo and install the requi

19 Oct 11, 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022