LSSY量化交易系统

Related tags

Deep LearningLSSY
Overview

LSSY量化交易系统

该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开。购买课程的朋友可以找我获取实盘部分和去邀请码。

支持A股和可转债市场并且可以实盘全自动交易的量化交易系统。

开源的目的是希望能有更多的人来参与社区维护,共同打造最完美的量化交易系统。

目前市场上集量化回测、实盘交易的系统并不多,适用A股的更是寥寥无几,要么收费高昂,LSSY量化交易系统为了让研究量化交易的朋友人人都能用,所以在此开源,并且完全免费,希望更多的人来参与完善系统,贡献自己的一份力量,避免大家重复劳动。

LSSY量化交易系统致力于量化交易,不再主观交易,通过数据,做大概率,让量化交易变得更容易,大家都可以参与完善,为了更好的利于社区发展,目前采用邀请制,使用邀请码才能完整的使用LSSY量化交易系统,提交代码或者邀请朋友都可以免费获得邀请码(在社区讨论QQ群发放)。

使用LSSY量化交易系统编写海龟交易法则

https://edu.csdn.net/course/detail/31900

LSSY量化交易系统的全面详细分析视频教程

https://edu.csdn.net/course/detail/31906

安装

  • Windows

    1.安装Linux子系统,选择ubuntu子系统。

    2.给子系统安装pip3

    sudo apt install python3-pip
    

    3.安装数据库

    sudo apt install redis
    

    4.启动数据库,子系统不能自动启动,所以每次都需要手动启动数据库服务,所以不建议在Windows上运行。

    redis-server
    
  • Linux

    1.安装 redis 数据库

    sudo apt install redis
    

    2.需要 python3.8

    下载源码编译安装:https://www.python.org/ftp/python/3.8.7/Python-3.8.7.tar.xz

执行安装脚本

./install.sh

启动LSSY量化交易系统

进入实盘交易

./runWork.py

进入回测

./runWork.py b

访问前端

推荐分辨率>=2k

http://127.0.0.1:8000/

redis 快照报错

修改配置文件

/etc/redis/redis.conf

找到

################################ SNAPSHOTTING  ################################
...
...
stop-writes-on-bgsave-error yes

改为

stop-writes-on-bgsave-error no

初次启动注意事项

首次部署LSSY量化交易系统,会下载大量财务历史等数据,根据网络情况可能会很慢,建议晚上睡觉前启动系统,一般到第二天就全部下载完成了,仅首次运行,后续每天只需要更新k线即可,速度会快很多。

QQ群讨论社区:174647513

PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
This is a clean and robust Pytorch implementation of DQN and Double DQN.

DQN/DDQN-Pytorch This is a clean and robust Pytorch implementation of DQN and Double DQN. Here is the training curve: All the experiments are trained

XinJingHao 15 Dec 27, 2022
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
Confident Semantic Ranking Loss for Part Parsing

Confident Semantic Ranking Loss for Part Parsing

Jiachen Xu 5 Oct 22, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
The official implementation of Variable-Length Piano Infilling (VLI).

Variable-Length-Piano-Infilling The official implementation of Variable-Length Piano Infilling (VLI). (paper: Variable-Length Music Score Infilling vi

29 Sep 01, 2022
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Dennis Bappert 104 Nov 25, 2022
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
Tree Nested PyTorch Tensor Lib

DI-treetensor treetensor is a generalized tree-based tensor structure mainly developed by OpenDILab Contributors. Almost all the operation can be supp

OpenDILab 167 Dec 29, 2022
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o

twang 98 Sep 17, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022