Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Overview

Cycle Consistent Adversarial Domain Adaptation (CyCADA)

A pytorch implementation of CyCADA.

If you use this code in your research please consider citing

@inproceedings{Hoffman_cycada2017,
       authors = {Judy Hoffman and Eric Tzeng and Taesung Park and Jun-Yan Zhu,
             and Phillip Isola and Kate Saenko and Alexei A. Efros and Trevor Darrell},
       title = {CyCADA: Cycle Consistent Adversarial Domain Adaptation},
       booktitle = {International Conference on Machine Learning (ICML)},
       year = 2018
}

Setup

  • Check out the repo (recursively will also checkout the CyCADA fork of the CycleGAN repo).
    git clone --recursive https://github.com/jhoffman/cycada_release.git cycada
  • Install python requirements
    • pip install -r requirements.txt

Train image adaptation only (digits)

  • Image adaptation builds on the work on CycleGAN. The submodule in this repo is a fork which also includes the semantic consistency loss.
  • Pre-trained image results for digits may be downloaded here
  • Producing SVHN as MNIST
    • For an example of how to train image adaptation on SVHN->MNIST, see cyclegan/train_cycada.sh. From inside the cyclegan subfolder run train_cycada.sh.
    • The snapshots will be stored in cyclegan/cycada_svhn2mnist_noIdentity. Inside test_cycada.sh set the epoch value to the epoch you wish to use and then run the script to generate 50 transformed images (to preview quickly) or run test_cycada.sh all to generate the full ~73K SVHN images as MNIST digits.
    • Results are stored inside cyclegan/results/cycada_svhn2mnist_noIdentity/train_75/images.
    • Note we use a dataset of mnist_svhn and for this experiment run in the reverse direction (BtoA), so the source (SVHN) images translated to look like MNIST digits will be stored as [label]_[imageId]_fake_B.png. Hence when images from this directory will be loaded later we will only images which match that naming convention.

Train feature adaptation only (digits)

  • The main script for feature adaptation can be found inside scripts/train_adda.py
  • Modify the data directory you which stores all digit datasets (or where they will be downloaded)

Train feature adaptation following image adaptation

  • Use the feature space adapt code with the data and models from image adaptation
  • For example: to train for the SVHN to MNIST shift, set src = 'svhn2mnist' and tgt = 'mnist' inside scripts/train_adda.py
  • Either download the relevant images above or run image space adaptation code and extract transferred images

Train Feature Adaptation for Semantic Segmentation

CyCADA pixel+feat SVHN2MNIST test(ckevin4747)

Owner
Hyunwoo Ko
Student Researcher in Korea University.
Hyunwoo Ko
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
SIMULEVAL A General Evaluation Toolkit for Simultaneous Translation

SimulEval SimulEval is a general evaluation framework for simultaneous translation on text and speech. Requirement python = 3.7.0 Installation git cl

Facebook Research 48 Dec 28, 2022
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations

lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho

Terence Parr 785 Dec 30, 2022
Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Populating 3D Scenes by Learning Human-Scene Interaction [Project Page] [Paper] License Software Copyright License for non-commercial scientific resea

Mohamed Hassan 81 Nov 08, 2022
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals"

The Temporal Robustness of Stochastic Signals Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals" Case stud

0 Oct 28, 2021
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).

334 Dec 31, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
SpecAugmentPyTorch - A Pytorch (support batch and channel) implementation of GoogleBrain's SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition

SpecAugment An implementation of SpecAugment for Pytorch How to use Install pytorch, version=1.9.0 (new feature (torch.Tensor.take_along_dim) is used

IMLHF 3 Oct 11, 2022
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022