[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Overview

Learning to Compose Visual Relations

This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations.

Demo

Image Generation Demo

Please use the following command to generate images on the CLEVR dataset. Please use --num_rels to control the input relational descriptions.

python demo.py --checkpoint_folder ./checkpoint --model_name clevr --output_folder ./ --dataset clevr \
--resume_iter best --batch_size 25 --num_steps 80 --num_rels 1 --data_folder ./data --mode generation
GIF Final Generated Image

Image Editing Demo

Please use the following command to edit images on the CLEVR dataset. Please use --num_rels to control the input relational descriptions.

python demo.py --checkpoint_folder ./checkpoint --model_name clevr --output_folder ./ --dataset clevr \
--resume_iter best --batch_size 25 --num_steps 80 --num_rels 1 --data_folder ./data --mode editing
Input Image GIF Final Edited Image

Training

Data Preparation

Please utilize the following data link to download the CLEVR data utilized in our experiments. Then place all data files under ./data folder. Downloads for additional datasets and precomputed feature files will be posted soon. Feel free to raise an issue if there is a particular dataset you would like to download.

Model Training

To train your own model, please run following command. Please use --dataset to train your model on different datasets, e.g. --dataset clevr.

python -u train.py --cond --dataset=${dataset} --exp=${dataset} --batch_size=10 --step_lr=300 \
--num_steps=60 --kl --gpus=1 --nodes=1 --filter_dim=128 --im_size=128 --self_attn \
--multiscale --norm --spec_norm --slurm --lr=1e-4 --cuda --replay_batch \
--numpy_data_path ./data/clevr_training_data.npz

Evaluation

To evaluate our model, you can use your own trained models or download the pre-trained models model_best.pth from ${dataset}_model folder from link and put it under the project folder ./checkpoints/${dataset}. Only clevr_model is currently available. More pretrained-models will be posted soon.

Evaluate Image Generation Results Using the Pretrained Classifiers

Please use the following command to generate images on the test set first. Please use --dataset and --num_rels to control the dataset and the number of input relational descriptions. Note that 1 <= num_rels <= 3.

python inference.py --checkpoint_folder ./checkpoints --model_name ${dataset} \
--output_folder ./${dataset}_gen_images --dataset ${dataset} --resume_iter best \
--batch_size 32 --num_steps 80 --num_rels ${num_rels} --data_folder ./data --mode generation

In order to evaluate the binary classification scores of the generated images, you can train one binary classifier or download a pretrained one from link under the binary_classifier folder.

To train your own binary classifier, please use following command:

python train_classifier.py --train --spec_norm --norm \
--dataset ${dataset} --lr 3e-4 --checkpoint_dir ./binary_classifier

Please use following command to evaluate on generated images conditioned on selected number of relations. Please use --num_rels to specify the number of relations.

python classification_scores.py --dataset ${dataset} --checkpoint_dir ./binary_classifier/ \
--data_folder ./data --generated_img_folder ./${dataset}_gen_images/num_rels_${num_rels} \
--mode generation --num_rels ${num_rels}

Evaluate Image Editing Results Using the Pretrained Classifiers

Please use the following command to edit images on the test set first. Please use --dataset and --num_rels to select the dataset and the number of input relational descriptions.

python inference.py --checkpoint_folder ./checkpoints --model_name ${dataset} \
--output_folder ./${dataset}_edit_images --dataset ${dataset} --resume_iter best \
--batch_size 32 --num_steps 80 --num_rels 1 --data_folder ./data --mode editing

To evaluate classification scores of image editing results, please change the --mode to editing.

python classification_scores.py --dataset ${dataset} --checkpoint_dir ./binary_classifier/ \
--data_folder ./data --generated_img_folder ./${dataset}_edit_images/num_rels_${num_rels} \
--mode editing --num_rels ${num_rels}

Acknowledgements

The code for training EBMs is from https://github.com/yilundu/improved_contrastive_divergence.


Citation

Please consider citing our papers if you use this code in your research:

@article{liu2021learning,
  title={Learning to Compose Visual Relations},
  author={Liu, Nan and Li, Shuang and Du, Yilun and Tenenbaum, Josh and Torralba, Antonio},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Owner
Nan Liu
MS CS @uiuc; BS CS @umich
Nan Liu
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
Determined: Deep Learning Training Platform

Determined: Deep Learning Training Platform Determined is an open-source deep learning training platform that makes building models fast and easy. Det

Determined AI 2k Dec 31, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.

Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and

Kai Staats 149 Jan 09, 2023
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
True Few-Shot Learning with Language Models

This codebase supports using language models (LMs) for true few-shot learning: learning to perform a task using a limited number of examples from a single task distribution.

Ethan Perez 124 Jan 04, 2023
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022