[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Overview

Learning to Compose Visual Relations

This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations.

Demo

Image Generation Demo

Please use the following command to generate images on the CLEVR dataset. Please use --num_rels to control the input relational descriptions.

python demo.py --checkpoint_folder ./checkpoint --model_name clevr --output_folder ./ --dataset clevr \
--resume_iter best --batch_size 25 --num_steps 80 --num_rels 1 --data_folder ./data --mode generation
GIF Final Generated Image

Image Editing Demo

Please use the following command to edit images on the CLEVR dataset. Please use --num_rels to control the input relational descriptions.

python demo.py --checkpoint_folder ./checkpoint --model_name clevr --output_folder ./ --dataset clevr \
--resume_iter best --batch_size 25 --num_steps 80 --num_rels 1 --data_folder ./data --mode editing
Input Image GIF Final Edited Image

Training

Data Preparation

Please utilize the following data link to download the CLEVR data utilized in our experiments. Then place all data files under ./data folder. Downloads for additional datasets and precomputed feature files will be posted soon. Feel free to raise an issue if there is a particular dataset you would like to download.

Model Training

To train your own model, please run following command. Please use --dataset to train your model on different datasets, e.g. --dataset clevr.

python -u train.py --cond --dataset=${dataset} --exp=${dataset} --batch_size=10 --step_lr=300 \
--num_steps=60 --kl --gpus=1 --nodes=1 --filter_dim=128 --im_size=128 --self_attn \
--multiscale --norm --spec_norm --slurm --lr=1e-4 --cuda --replay_batch \
--numpy_data_path ./data/clevr_training_data.npz

Evaluation

To evaluate our model, you can use your own trained models or download the pre-trained models model_best.pth from ${dataset}_model folder from link and put it under the project folder ./checkpoints/${dataset}. Only clevr_model is currently available. More pretrained-models will be posted soon.

Evaluate Image Generation Results Using the Pretrained Classifiers

Please use the following command to generate images on the test set first. Please use --dataset and --num_rels to control the dataset and the number of input relational descriptions. Note that 1 <= num_rels <= 3.

python inference.py --checkpoint_folder ./checkpoints --model_name ${dataset} \
--output_folder ./${dataset}_gen_images --dataset ${dataset} --resume_iter best \
--batch_size 32 --num_steps 80 --num_rels ${num_rels} --data_folder ./data --mode generation

In order to evaluate the binary classification scores of the generated images, you can train one binary classifier or download a pretrained one from link under the binary_classifier folder.

To train your own binary classifier, please use following command:

python train_classifier.py --train --spec_norm --norm \
--dataset ${dataset} --lr 3e-4 --checkpoint_dir ./binary_classifier

Please use following command to evaluate on generated images conditioned on selected number of relations. Please use --num_rels to specify the number of relations.

python classification_scores.py --dataset ${dataset} --checkpoint_dir ./binary_classifier/ \
--data_folder ./data --generated_img_folder ./${dataset}_gen_images/num_rels_${num_rels} \
--mode generation --num_rels ${num_rels}

Evaluate Image Editing Results Using the Pretrained Classifiers

Please use the following command to edit images on the test set first. Please use --dataset and --num_rels to select the dataset and the number of input relational descriptions.

python inference.py --checkpoint_folder ./checkpoints --model_name ${dataset} \
--output_folder ./${dataset}_edit_images --dataset ${dataset} --resume_iter best \
--batch_size 32 --num_steps 80 --num_rels 1 --data_folder ./data --mode editing

To evaluate classification scores of image editing results, please change the --mode to editing.

python classification_scores.py --dataset ${dataset} --checkpoint_dir ./binary_classifier/ \
--data_folder ./data --generated_img_folder ./${dataset}_edit_images/num_rels_${num_rels} \
--mode editing --num_rels ${num_rels}

Acknowledgements

The code for training EBMs is from https://github.com/yilundu/improved_contrastive_divergence.


Citation

Please consider citing our papers if you use this code in your research:

@article{liu2021learning,
  title={Learning to Compose Visual Relations},
  author={Liu, Nan and Li, Shuang and Du, Yilun and Tenenbaum, Josh and Torralba, Antonio},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Owner
Nan Liu
MS CS @uiuc; BS CS @umich
Nan Liu
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
The implementation of the lifelong infinite mixture model

Lifelong infinite mixture model 📋 This is the implementation of the Lifelong infinite mixture model 📋 Accepted by ICCV 2021 Title : Lifelong Infinit

Fei Ye 5 Oct 20, 2022
LSUN Dataset Documentation and Demo Code

LSUN Please check LSUN webpage for more information about the dataset. Data Release All the images in one category are stored in one lmdb database fil

Fisher Yu 426 Jan 02, 2023
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Explaining neural decisions contrastively to alternative decisions.

Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about

AI2 16 Oct 16, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
duralava is a neural network which can simulate a lava lamp in an infinite loop.

duralava duralava is a neural network which can simulate a lava lamp in an infinite loop. Example This is not a real lava lamp but a "fake" one genera

Maximilian Bachl 87 Dec 20, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022