Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Overview

Reverse_Engineering_GMs

Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images".

The paper and supplementary can be found at https://arxiv.org/abs/2106.07873

alt text

Prerequisites

  • PyTorch 1.5.0
  • Numpy 1.14.2
  • Scikit-learn 0.22.2

Getting Started

Datasets

For reverse enginnering:

For deepfake detection:

  • Download the CelebA/LSUN dataset

For image_attribution:

  • Generate 110,000 images for four different GAN models as specified in https://github.com/ningyu1991/GANFingerprints/
  • For real images, use 110,000 of CelebA dataset.
  • For training: we used 100,000 images and remaining 10,000 for testing.

Training

  • Provide the train and test path in respective codes as sepecified below.
  • Provide the model path to resume training
  • Run the code

For reverse engineering, run:

python reverse_eng.py

For deepfake detection, run:

python deepfake_detection.py

For image attribution, run:

python image_attribution.py

Testing using pre-trained models

For reverse engineering, run:

python reverse_eng_test.py

For deepfake detection, run:

python deepfake_detection_test.py

For image attribution, run:

python image_attribution_test.py

If you would like to use our work, please cite:

@misc{asnani2021reverse,
      title={Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images}, 
      author={Vishal Asnani and Xi Yin and Tal Hassner and Xiaoming Liu},
      year={2021},
      eprint={2106.07873},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Comments
  • loaded state dict contains a parameter group that doesn't match the size of optimizer's group

    loaded state dict contains a parameter group that doesn't match the size of optimizer's group

    Hello, I have met a problem (as in the picture below) when executing the file "reverse_eng_test.py" loading the model "11_model_set_1.pickle". Could you please tell me what does the error mean? Because I am not familiar with the architecture of the model and the given pre-trained model "11_model_set_1.pickle". Upon the error is the output of the code ( print(state1['optimizer_1']) ) added by me to see the state of the "state1['optimizer_1']". Thank you!

    image

    opened by hyhchaos 9
  • The .npy files in the rev_eng_updated.py could not be found in the main folders or the .zip or tar.gz file

    The .npy files in the rev_eng_updated.py could not be found in the main folders or the .zip or tar.gz file

    The .npy files in the rev_eng_updated.py could not be found in the main folders or the .zip or tar.gz file. The lost .npy files are in the following codes:

    ground_truth_net_all=torch.from_numpy(np.load("ground_truth_net_131_15dim.npy")) ground_truth_loss_9_all=torch.from_numpy(np.load("ground_truth_loss_131_10dim.npy"))

    ground_truth_net_all_dev=torch.from_numpy(np.load("net_dev_131_dim.npy")) ground_truth_loss_9_all_dev=torch.from_numpy(np.load("ground_truth_loss_131_10dim.npy"))

    ground_truth_net_cluster=torch.from_numpy(np.load("net_cluster_131_dim.npy")) ground_truth_loss_9_cluster=torch.from_numpy(np.load("loss_cluster_131_dim.npy")) #ground_truth_net_all=torch.from_numpy(np.load("random_ground_truth_net_arch_91_15dim.npy")) #ground_truth_loss_all=torch.from_numpy(np.load("random_ground_truth_loss_91_3dim.npy")) #ground_truth_loss_9_all=torch.from_numpy(np.load("random_ground_truth_loss_91_9dim.npy"))

    ground_truth_p=torch.from_numpy(np.load("p_131_.npy"))

    If you could tell me where I can find them, thank you very much. Best wishes!

    opened by zhangtzq 3
  • deepfake_detection.py gives an error ValueError: loaded state dict contains a parameter group that doesn't match the size of optimizer's group

    deepfake_detection.py gives an error ValueError: loaded state dict contains a parameter group that doesn't match the size of optimizer's group

    @vishal3477 I couldn't run **fake_detection_test.py". It gives the following error below. Thanks,

    optimizer.load_state_dict(state1['optimizer_1'])
    

    deepfake_detection_test_error

    opened by ssablak 3
  • What is

    What is "ground_truth_dir" in "reverse_eng_test.py"?

    I have downloaded the data and model. When I run the "reverse_eng_test.py" file, I find that I can not provide the below files. Could you please answer how can I get these files? Thank you very much!

    ground_truth_net_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_net_arch_100_15dim.npy"))
    ground_truth_loss_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_loss_100_3dim.npy"))
    ground_truth_loss_9_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_loss_100_9dim.npy"))
    
    opened by hyhchaos 3
  • torch.rfft is deprecated

    torch.rfft is deprecated

    @vishal3477 Since rfft is deprecated in the newer torch versions. It gives the following error. rfft

    I tried to fix it, but it starts to give an error as rfft2error

    Could you please help me how to define rfft in the newer version of pytorch? Thanks. -Steve

    opened by ssablak 2
  • Getting only 0.1916 Accuracy in Image Attribution

    Getting only 0.1916 Accuracy in Image Attribution

    image

    I'm getting only 0.1916 accuracy in image attribution task, in the test dataset in each of the five classes I've puted 1K generated images from respective GANs and 1K real images from CelebA, and I'm using the pre-trained model.

    I'm using the following code in image_attribution_test.py file:

    from torchvision import datasets, models, transforms #from model import * import os import torch from torch.autograd import Variable from skimage import io from scipy import fftpack import numpy as np from torch import nn import datetime from models import encoder_image_attr from models import fen import torch.nn.functional as F from sklearn.metrics import accuracy_score from sklearn import metrics import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument('--lr', default=0.0001, type=float, help='learning rate')
    parser.add_argument('--data_test',default='Test_Dataset/',help='root directory for testing data')
    parser.add_argument('--ground_truth_dir',default='./',help='directory for ground truth')
    parser.add_argument('--seed', default=1, type=int, help='manual seed')
    parser.add_argument('--batch_size', default=16, type=int, help='batch size')
    parser.add_argument('--savedir', default='runs')
    parser.add_argument('--model_dir', default='./models')
    
    
    
    opt = parser.parse_args()
    print(opt)
    print("Random Seed: ", opt.seed)
    
    device=torch.device("cuda:0")
    torch.backends.deterministic = True
    torch.manual_seed(opt.seed)
    torch.cuda.manual_seed_all(opt.seed)
    sig = "sig"
    
    
    test_path=opt.data_test
    save_dir=opt.savedir
    
    os.makedirs('%s/logs/%s' % (save_dir, sig), exist_ok=True)
    os.makedirs('%s/result_2/%s' % (save_dir, sig), exist_ok=True)
    
    transform_train = transforms.Compose([
    transforms.Resize((128,128)),
    transforms.ToTensor(),
    transforms.Normalize((0.6490, 0.6490, 0.6490), (0.1269, 0.1269, 0.1269))
    ])
    
    
    test_set=datasets.ImageFolder(test_path, transform_train)
    
    
    test_loader = torch.utils.data.DataLoader(test_set,batch_size=opt.batch_size,shuffle =True, num_workers=1)
    
    
    
    model=fen.DnCNN().to(device)
    
    model_params = list(model.parameters())    
    optimizer = torch.optim.Adam(model_params, lr=opt.lr)
    l1=torch.nn.MSELoss().to(device)
    l_c = torch.nn.CrossEntropyLoss().to(device)
    
    model_2=encoder_image_attr.encoder(num_hidden=512).to(device)
    optimizer_2 = torch.optim.Adam(model_2.parameters(), lr=opt.lr)
    state = {
        'state_dict_cnn':model.state_dict(),
        'optimizer_1': optimizer.state_dict(),
        'state_dict_class':model_2.state_dict(),
        'optimizer_2': optimizer_2.state_dict()
        
    }
    
    
    state1 = torch.load("pre_trained_models/image_attribution/celeba/0_model_27_384000.pickle")
    optimizer.load_state_dict(state1['optimizer_1'])
    model.load_state_dict(state1['state_dict_cnn'])
    optimizer_2.load_state_dict(state1['optimizer_2'])
    model_2.load_state_dict(state1['state_dict_class'])
    
    
    
    
    def test(batch, labels):
        model.eval()
        model_2.eval()
        with torch.no_grad():
            y,low_freq_part,max_value ,y_orig,residual, y_trans,residual_gray =model(batch.type(torch.cuda.FloatTensor))
            y_2=torch.unsqueeze(y.clone(),1)
            classes, features=model_2(y_2)
            classes_f=torch.max(classes, dim=1)[0]
            
            n=25
            zero=torch.zeros([y.shape[0],2*n+1,2*n+1], dtype=torch.float32).to(device)  
            zero_1=torch.zeros(residual_gray.shape, dtype=torch.float32).to(device)
            loss1=0.5*l1(low_freq_part,zero).to(device) 
            loss2=-0.001*max_value.to(device)
            loss3 = 0.01*l1(residual_gray,zero_1).to(device)
            loss_c =10*l_c(classes,labels.type(torch.cuda.LongTensor))
            loss5=0.1*l1(y,y_trans).to(device)
            loss=(loss1+loss2+loss3+loss_c+loss5)
        return y, loss.item(), loss1.item(),loss2.item(),loss3.item(),loss_c.item(),loss5.item(),y_orig, features,residual,torch.max(classes, dim=1)[1], classes[:,1]
    
    
    print(len(test_set))
    print(test_set.class_to_idx)
    epochs=2
    
    
    for epoch in range(epochs):
        all_y=[]
        all_y_test=[]
        flag1=0
        count=0
        itr=0
        
        for batch_idx_test, (inputs_test,labels_test) in enumerate(test_loader):
    
            out,loss,loss1,loss2,loss3,loss4,loss5, out_orig,features,residual,pred,scores=test(Variable(torch.FloatTensor(inputs_test)),Variable(torch.LongTensor(labels_test)))
    
            if flag1==0:
                all_y_test=labels_test
                all_y_pred_test=pred.detach()
                all_scores=scores.detach()
                flag1=1
    
            else:
                all_y_pred_test=torch.cat([all_y_pred_test,pred.detach()], dim=0)
                all_y_test=torch.cat([all_y_test,labels_test], dim=0)
                all_scores=torch.cat([all_scores,scores], dim=0)
        fpr1, tpr1, thresholds1 = metrics.roc_curve(all_y_test, np.asarray(all_scores.cpu()), pos_label=1)
        print("testing accuracy is:", accuracy_score(all_y_test,np.asarray(all_y_pred_test.cpu())))
    
    opened by indrakumarmhaski 1
  • Groundtruth Files Issue

    Groundtruth Files Issue

    Hi Vishal, Where can I download the following files? I see three .npy files on the repo but the naming is not matching the exact files between repo and source code.

    I changed the filename in repo below

    FROM ground_truth_loss_func_3dim_file.npy ground_truth_loss_func_8dim_file.npy ground_truth_net_arch_15dim_file.npy groundtruth2

    TO below ground_truth_loss_100_9dim.npy ground_truth_net_arch_100_15dim.npy ground_truth_loss_100_3dim.npy

    groundtruthfiles

    But it didn't run through. It gives the following error

    error

    Thanks, -Steve

    opened by ssablak 1
  • I have a question

    I have a question

    hello, do i need to create all the paths in the reverse_eng.py ? what do i need to save for wach folder?

    parser.add_argument('--lr', default=0.0001, type=float, help='learning rate') parser.add_argument('--data_train',default='mnt/scratch/asnanivi/GAN_data_6/set_1/train',help='root directory for training data') parser.add_argument('--data_test',default='mnt/scratch/asnanivi/GAN_data_6/set_1/test',help='root directory for testing data') parser.add_argument('--ground_truth_dir',default='./',help='directory for ground truth') parser.add_argument('--seed', default=1, type=int, help='manual seed') parser.add_argument('--batch_size', default=16, type=int, help='batch size') parser.add_argument('--savedir', default='/mnt/scratch/asnanivi/runs') parser.add_argument('--model_dir', default='./models') parser.add_argument('--N_given', nargs='+', help='position number of GM from list of GMs used in testing', default=[1,2,3,4,5,6])

    os.chmod('./mnt/scratch',0o777) os.makedirs('.%s/result_3/%s' % (save_dir, sig), exist_ok=True)

    i also had a mistake:Couldn't find any class folder in mnt/scratch/asnanivi/GAN_data_6/set_1/train

    Thanks!

    opened by YZF-Myself 1
  • There is no codes about the cluster prediction about the discrete type network structure parameter in the encoder_rev_eng.py file

    There is no codes about the cluster prediction about the discrete type network structure parameter in the encoder_rev_eng.py file

    I'm sorry to have bothered you. But I didn't find the code for discrete type network structure parameter clustering prediction in the encoder_rev_eng.py file of the original models folder or in the latest Reverse Engineering 2.0 code compressed file. However, your article states the clustering prediction about discrete type network structure parameters, which is important to the result. Looking forward to your reply.

    opened by zhangtzq 5
  • Ground truth file missing

    Ground truth file missing

    Hi, thank you for sharing your code and data. I'm trying to run the reverse_eng_train.py and reverse_eng_test.py scripts, but both are failing due to missing files required in the following lines:

    ground_truth_net_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_net_arch_100_15dim.npy"))
    ground_truth_loss_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_loss_100_3dim.npy"))
    ground_truth_loss_9_all=torch.from_numpy(np.load(opt.ground_truth_dir+ "ground_truth_loss_100_9dim.npy"))
    

    I downloaded the dataset of trained models from the google drive link in the Readme, but couldn't find any information about where we can access those ground-truth data.

    Also, could you verify that the file in the google drive 11_model_set_1.pickle contains the 100 trained models? When I load the file (e.g. data = torch.load('11_model_set_1.pickle), I am getting a checkpoint of a single model (and optimizers). I'd appreciate if you could verify that this is the right file to download the trained models.

    Thank you!

    opened by cocoaaa 1
  • Parameter setting in deepfake detection

    Parameter setting in deepfake detection

    Thank you very much for your contribution.In the deepfake detection module of the paper, parameter lambda1-4 are set as follows which is inconsistent with the code: 参数设置

    loss1=0.05*l1(low_freq_part,zero).to(device) 
    loss2=-0.001*max_value.to(device)
    loss3 = 0.01*l1(residual_gray,zero_1).to(device)
    loss_c =20*l_c(classes,labels.type(torch.cuda.LongTensor))
    loss5=0.1*l1(y,y_trans).to(device)
    

    Can you explain that? Thank you.

    opened by wytcsuch 5
Releases(v2.0)
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023
COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

COPA-SSE Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning. COPA-SSE contains crowdsourced explanations for the Balanced

Ana Brassard 5 Jul 31, 2022
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022