Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

Overview

scc4onnx

Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • Allow the user to specify the name of the input OP to change the input order.
  • All number of dimensions can be freely changed, not only 4 dimensions such as NCHW and NHWC.
  • Simply rewrite the input order of the input OP to the specified order and extrapolate Transpose after the input OP so that it does not affect the processing of subsequent OPs.
  • Allows the user to change the channel order of RGB and BGR by specifying options.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U scc4onnx

1-2. Docker

### docker pull
$ docker pull pinto0309/scc4onnx:latest

### docker build
$ docker build -t pinto0309/scc4onnx:latest .

### docker run
$ docker run --rm -it -v `pwd`:/workdir pinto0309/scc4onnx:latest
$ cd /workdir

2. CLI Usage

$ scc4onnx -h

usage:
  scc4onnx [-h]
  --input_onnx_file_path INPUT_ONNX_FILE_PATH
  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
  [--input_op_names_and_order_dims INPUT_OP_NAME ORDER_DIM]
  [--channel_change_inputs INPUT_OP_NAME DIM]
  [--non_verbose]

optional arguments:
  -h, --help
      show this help message and exit

  --input_onnx_file_path INPUT_ONNX_FILE_PATH
      Input onnx file path.

  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
      Output onnx file path.

  --input_op_names_and_order_dims INPUT_OP_NAME ORDER_DIM
      Specify the name of the input_op to be dimensionally changed and the order of the
      dimensions after the change.
      The name of the input_op to be dimensionally changed can be specified multiple times.

      e.g.
      --input_op_names_and_order_dims aaa [0,3,1,2] \
      --input_op_names_and_order_dims bbb [0,2,3,1] \
      --input_op_names_and_order_dims ccc [0,3,1,2,4,5]

  --channel_change_inputs INPUT_OP_NAME DIM
      Change the channel order of RGB and BGR.
      If the original model is RGB, it is transposed to BGR.
      If the original model is BGR, it is transposed to RGB.
      It can be selectively specified from among the OP names specified
      in --input_op_names_and_order_dims.
      OP names not specified in --input_op_names_and_order_dims are ignored.
      Multiple times can be specified as many times as the number of OP names specified
      in --input_op_names_and_order_dims.
      --channel_change_inputs op_name dimension_number_representing_the_channel
      dimension_number_representing_the_channel must specify the dimension position before
      the change in input_op_names_and_order_dims.
      For example, dimension_number_representing_the_channel is 1 for NCHW and 3 for NHWC.

      e.g.
      --channel_change_inputs aaa 3 \
      --channel_change_inputs bbb 1 \
      --channel_change_inputs ccc 5

  --non_verbose
      Do not show all information logs. Only error logs are displayed.

3. In-script Usage

$ python
>>> from scc4onnx import order_conversion
>>> help(order_conversion)
Help on function order_conversion in module scc4onnx.onnx_input_order_converter:

order_conversion(
  input_op_names_and_order_dims: Union[dict, NoneType] = None,
  channel_change_inputs: Union[dict, NoneType] = None,
  input_onnx_file_path: Union[str, NoneType] = '',
  output_onnx_file_path: Union[str, NoneType] = '',
  onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
  non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.
    
    output_onnx_file_path: Optional[str]
        Output onnx file path.
        If output_onnx_file_path is not specified, no .onnx file is output.
    
    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.
    
    input_op_names_and_order_dims: Optional[dict]
        Specify the name of the input_op to be dimensionally changed and
        the order of the dimensions after the change.
        The name of the input_op to be dimensionally changed
        can be specified multiple times.
    
        e.g.
        input_op_names_and_order_dims = {
            "input_op_name1": [0,3,1,2],
            "input_op_name2": [0,2,3,1],
            "input_op_name3": [0,3,1,2,4,5],
        }
    
    channel_change_inputs: Optional[dict]
        Change the channel order of RGB and BGR.
        If the original model is RGB, it is transposed to BGR.
        If the original model is BGR, it is transposed to RGB.
        It can be selectively specified from among the OP names
        specified in input_op_names_and_order_dims.
        OP names not specified in input_op_names_and_order_dims are ignored.
        Multiple times can be specified as many times as the number
        of OP names specified in input_op_names_and_order_dims.
        channel_change_inputs = {"op_name": dimension_number_representing_the_channel}
        dimension_number_representing_the_channel must specify
        the dimension position after the change in input_op_names_and_order_dims.
        For example, dimension_number_representing_the_channel is 1 for NCHW and 3 for NHWC.
    
        e.g.
        channel_change_inputs = {
            "aaa": 1,
            "bbb": 3,
            "ccc": 2,
        }
    
    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False
    
    Returns
    -------
    order_converted_graph: onnx.ModelProto
        Order converted onnx ModelProto

4. CLI Execution

$ scc4onnx \
--input_onnx_file_path crestereo_next_iter2_240x320.onnx \
--output_onnx_file_path crestereo_next_iter2_240x320_ord.onnx \
--input_op_names_and_order_dims left [0,2,3,1] \
--input_op_names_and_order_dims right [0,2,3,1] \
--channel_change_inputs left 1 \
--channel_change_inputs right 1

5. In-script Execution

from scc4onnx import order_conversion

order_converted_graph = order_conversion(
    onnx_graph=graph,
    input_op_names_and_order_dims={"left": [0,2,3,1], "right": [0,2,3,1]},
    channel_change_inputs={"left": 1, "right": 1},
    non_verbose=True,
)

6. Sample

6-1. Transpose only

image

$ scc4onnx \
--input_onnx_file_path crestereo_next_iter2_240x320.onnx \
--output_onnx_file_path crestereo_next_iter2_240x320_ord.onnx \
--input_op_names_and_order_dims left [0,2,3,1] \
--input_op_names_and_order_dims right [0,2,3,1]

image image

6-2. Transpose + RGB<->BGR

image

$ scc4onnx \
--input_onnx_file_path crestereo_next_iter2_240x320.onnx \
--output_onnx_file_path crestereo_next_iter2_240x320_ord.onnx \
--input_op_names_and_order_dims left [0,2,3,1] \
--input_op_names_and_order_dims right [0,2,3,1] \
--channel_change_inputs left 1 \
--channel_change_inputs right 1

image

6-3. RGB<->BGR only

image

$ scc4onnx \
--input_onnx_file_path crestereo_next_iter2_240x320.onnx \
--output_onnx_file_path crestereo_next_iter2_240x320_ord.onnx \
--channel_change_inputs left 1 \
--channel_change_inputs right 1

image

7. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

You might also like...
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runtime Web.

A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx] ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Releases(1.0.5)
  • 1.0.5(Sep 9, 2022)

    • Add short form parameter
      $ scc4onnx -h
      
      usage:
        scc4onnx [-h]
        -if INPUT_ONNX_FILE_PATH
        -of OUTPUT_ONNX_FILE_PATH
        [-ioo INPUT_OP_NAME ORDER_DIM]
        [-cci INPUT_OP_NAME DIM]
        [-n]
      
      optional arguments:
        -h, --help
            show this help message and exit
      
        -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
            Input onnx file path.
      
        -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
            Output onnx file path.
      
        -ioo INPUT_OP_NAMES_AND_ORDER_DIMS INPUT_OP_NAMES_AND_ORDER_DIMS, --input_op_names_and_order_dims INPUT_OP_NAMES_AND_ORDER_DIMS INPUT_OP_NAMES_AND_ORDER_DIMS
            Specify the name of the input_op to be dimensionally changed and the order of the
            dimensions after the change.
            The name of the input_op to be dimensionally changed can be specified multiple times.
      
            e.g.
            --input_op_names_and_order_dims aaa [0,3,1,2] \
            --input_op_names_and_order_dims bbb [0,2,3,1] \
            --input_op_names_and_order_dims ccc [0,3,1,2,4,5]
      
        -cci CHANNEL_CHANGE_INPUTS CHANNEL_CHANGE_INPUTS, --channel_change_inputs CHANNEL_CHANGE_INPUTS CHANNEL_CHANGE_INPUTS
            Change the channel order of RGB and BGR.
            If the original model is RGB, it is transposed to BGR.
            If the original model is BGR, it is transposed to RGB.
            It can be selectively specified from among the OP names specified
            in --input_op_names_and_order_dims.
            OP names not specified in --input_op_names_and_order_dims are ignored.
            Multiple times can be specified as many times as the number of OP names specified
            in --input_op_names_and_order_dims.
            --channel_change_inputs op_name dimension_number_representing_the_channel
            dimension_number_representing_the_channel must specify the dimension position before
            the change in input_op_names_and_order_dims.
            For example, dimension_number_representing_the_channel is 1 for NCHW and 3 for NHWC.
      
            e.g.
            --channel_change_inputs aaa 3 \
            --channel_change_inputs bbb 1 \
            --channel_change_inputs ccc 5
      
        -n, --non_verbose
            Do not show all information logs. Only error logs are displayed.
      

    Full Changelog: https://github.com/PINTO0309/scc4onnx/compare/1.0.4...1.0.5

    Source code(tar.gz)
    Source code(zip)
  • 1.0.4(May 25, 2022)

  • 1.0.3(May 15, 2022)

  • 1.0.2(May 10, 2022)

  • 1.0.1(Apr 19, 2022)

  • 1.0.0(Apr 18, 2022)

Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiati

8 Aug 28, 2022
MvtecAD unsupervised Anomaly Detection

MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly

0 Feb 25, 2022
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

Xin Xia 11 Nov 22, 2022
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 09, 2022
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
Solver for Large-Scale Rank-One Semidefinite Relaxations

STRIDE: spectrahedral proximal gradient descent along vertices A Solver for Large-Scale Rank-One Semidefinite Relaxations About STRIDE is designed for

48 Dec 20, 2022
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022