BASH - Biomechanical Animated Skinned Human

Overview

BASH - Biomechanical Animated Skinned Human

BASH Teaser

Schleicher, R., Nitschke, M., Martschinke, J., Stamminger, M., Eskofier, B., Klucken, J., Koelewijn, A. (2021). BASH: Biomechanical Animated Skinned Human for Visualization of Kinematics and Muscle Activity. 16th International Conference on Computer Graphics Theory and Applications (GRAPP), 2021.

https://www.scitepress.org/Papers/2021/102106/102106.pdf

BASH Model

Converting a OpenSim [1] format file (.osim + .mot) to the SCAPE [2] framework. Visualization tool to inspect the animated model in 3D.

Processing Pipeline

Input Model: OpenSim

  • Parser
  • Model (.osim)
  • Scale factors (.xml)
  • Motion (.mot)
  • Muscle Activation (.sto)

Baseline model Design for a new Musculoskeltal Model (in Blender)

  • modeling
  • import SCAPE mesh
  • rig and skin skeleton (same hierarchy as musucloskeletal model)
  • place markers (same set as musculoskeletal model)
  • export model (.dae reorders vertices...) => mesh, markers & weights files

Scaling

  • performed automatically, applied correctly to the hierachy, applied in bone space
  • use .xml file or my estimation (defined in settings.h)
  • scaled vs generic in ./data/cache/mesh/

Initial Pose Matching

  • computed automatically using OpenSim's IK solver
  • cached in ./data/cache/mapping for debugging the resulting .mot file

Pose Transformation

  • calculated beforehand (needed the mesh for projection to SCAPE)
  • uses pose mapping projection and kinematic transformations, applied in world space
  • cached in ./data/cache/mesh/

Projection into SCAPE space

  • projection to scape space (only relative rotations)
  • rigid alignment to adjust translation
  • cached in ./data/cache/mesh/

Visualization of Muscle Activation

  • computed at run-time
  • color coding in Fragment Shader

Settings

  • settings.h for keyshortcuts, constants and other configurations

Project structure and dependencies

  • SCAPE: The main Windows-Application that handles the model conversion and visualization

  • External dependencies (minimum required version):

  • SFML (>= 2.5.1)

  • glew (>= 2.1.0)

  • glm (>= 0.9.9.5)

  • Assimp (>= 3.0.0)

  • OpenSim and SimbodyTK (>= 4.0)

  • libRender: A custom framework used for creating a window and render a 3D-application in it

  • External dependencies (minimum required version):

  • SFML (>= 2.5.1)

  • glew (>= 2.1.0)

  • glm (>= 0.9.9.5)

  • libSCAPE: The SCAPE framework to load the SCAPE binary data and create a mesh in pose and shape

  • External dependencies (minimum required version):

  • SuitSparse package: suitsparse + amd + umfpack (>= 5.1.2)

  • GSL (>= 2.4)

SCAPE Framework

  • Implementation in ´SCAPE.h´
  • Model parameters
  • Pose: Rotation vector for each part ('numParts = 16') in three-dimensional twist subvectors (the axis is determined by the vector's direction and the angle is determined by the vector's magnitude.
  • Shape: Scalar PCA coefficients ('numVecs = 20') to modify body proportions like height, size and gender etc.

Building platform x64

  • OpenSim can only be built in 64bit. So we have to use the x64 Platform in order to use their API.
  • Include and link all dependencies in x64.
  • Build the SCAPE framework in x64.
  • Define the flag '#define SAVE_MATRIX 0' once to write new binaries in the correct format (64bit wording).
  • The folder 'data\default_scape_data' should contain the binary files: 'matrixDGrad.bin', 'SCAPE_DGrad_numeric.bin', 'SCAPE_DGrad_symbolic.bin', 'SCAPE_pose.bin'.

Example result

OpenSim's visualization compared to our visualization (data set: straight running [3]): Example

References

[1] Seth, A., Hicks, J. L., Uchida, T. K., Habib, A., Dembia,C. L., Dunne, J. J., Ong, C. F., DeMers, M. S., Ra-jagopal, A., Millard, M., et al. (2018). OpenSim: Sim-ulating musculoskeletal dynamics and neuromuscularcontrol to study human and animal movement. PLoSComputational Biology, 14(7):1–20.

[2] Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers,J., and Davis, J. (2005). SCAPE: Shape Completionand Animation of People. InACM Transactions onGraphics, volume 24, pages 408–416.

[3] Nitschke, M., Dorschky, E., Heinrich, D., Schlarb, H., Eskofier, B. M., Koelewijn, A. D., and Van den Bogert, A. J. (2020). Efficient trajectory optimization for curved running using a 3D musculoskeletal model with implicit dynamics. Scientific Reports, 10(17655).

Owner
Machine Learning and Data Analytics Lab FAU
Public projects of the Machine Learning and Data Analytics Lab at the Friedrich-Alexander-University Erlangen-Nürnberg
Machine Learning and Data Analytics Lab FAU
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Grace Hešeri 56 Dec 20, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

MoViNet-pytorch Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition. Authors: Dan Kondratyuk, Liangzh

189 Dec 20, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer

AdaConv Unofficial PyTorch implementation of the Adaptive Convolution architecture for image style transfer from "Adaptive Convolutions for Structure-

65 Dec 22, 2022