PlenOctrees: NeRF-SH Training & Conversion

Overview

PlenOctrees Official Repo: NeRF-SH training and conversion

This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting part of the code release for:

PlenOctrees for Real Time Rendering of Neural Radiance Fields
Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, Angjoo Kanazawa

https://alexyu.net/plenoctrees

Please see the following repository for our C++ PlenOctrees volume renderer: https://github.com/sxyu/volrend

Setup

Please use conda for a replicable environment.

conda env create -f environment.yml
conda activate plenoctree
pip install --upgrade pip

Or you can install the dependencies manually by:

conda install pytorch torchvision cudatoolkit=11.0 -c pytorch
conda install tqdm
pip install -r requirements.txt

[Optional] Install GPU and TPU support for Jax. This is useful for NeRF-SH training. Remember to change cuda110 to your CUDA version, e.g. cuda102 for CUDA 10.2.

pip install --upgrade jax jaxlib==0.1.65+cuda110 -f https://storage.googleapis.com/jax-releases/jax_releases.html

NeRF-SH Training

We release our trained NeRF-SH models as well as converted plenoctrees at Google Drive. You can also use the following commands to reproduce the NeRF-SH models.

Training and evaluation on the NeRF-Synthetic dataset (Google Drive):

export DATA_ROOT=./data/NeRF/nerf_synthetic/
export CKPT_ROOT=./data/Plenoctree/checkpoints/syn_sh16/
export SCENE=chair
export CONFIG_FILE=nerf_sh/config/blender

python -m nerf_sh.train \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

python -m nerf_sh.eval \
    --chunk 4096 \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

Note for SCENE=mic, we adopt a warmup learning rate schedule (--lr_delay_steps 50000 --lr_delay_mult 0.01) to avoid unstable initialization.

Training and evaluation on TanksAndTemple dataset (Download Link) from the NSVF paper:

export DATA_ROOT=./data/TanksAndTemple/
export CKPT_ROOT=./data/Plenoctree/checkpoints/tt_sh25/
export SCENE=Barn
export CONFIG_FILE=nerf_sh/config/tt

python -m nerf_sh.train \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

python -m nerf_sh.eval \
    --chunk 4096 \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

PlenOctrees Conversion and Optimization

Before converting the NeRF-SH models into plenoctrees, you should already have the NeRF-SH models trained/downloaded and placed at ./data/PlenOctree/checkpoints/{syn_sh16, tt_sh25}/. Also make sure you have the training data placed at ./data/{NeRF/nerf_synthetic, TanksAndTemple}.

To reproduce our results in the paper, you can simplly run:

# NeRF-Synthetic dataset
python -m octree.task_manager octree/config/syn_sh16.json --gpus="0 1 2 3"

# TanksAndTemple dataset
python -m octree.task_manager octree/config/tt_sh25.json --gpus="0 1 2 3"

The above command will parallel all scenes in the dataset across the gpus you set. The json files contain dedicated hyper-parameters towards better performance (PSNR, SSIM, LPIPS). So in this setting, a 24GB GPU is needed for each scene and in averange the process takes about 15 minutes to finish. The converted plenoctree will be saved to ./data/PlenOctree/checkpoints/{syn_sh16, tt_sh25}/$SCENE/octrees/.

Below is a more straight-forward script for demonstration purpose:

export DATA_ROOT=./data/NeRF/nerf_synthetic/
export CKPT_ROOT=./data/PlenOctree/checkpoints/syn_sh16
export SCENE=chair
export CONFIG_FILE=nerf_sh/config/blender

python -m octree.extraction \
    --train_dir $CKPT_ROOT/$SCENE/ --is_jaxnerf_ckpt \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/ \
    --output $CKPT_ROOT/$SCENE/octrees/tree.npz

python -m octree.optimization \
    --input $CKPT_ROOT/$SCENE/tree.npz \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/ \
    --output $CKPT_ROOT/$SCENE/octrees/tree_opt.npz

python -m octree.evaluation \
    --input $CKPT_ROOT/$SCENE/octrees/tree_opt.npz \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

# [Optional] Only used for in-browser viewing.
python -m octree.compression \
    $CKPT_ROOT/$SCENE/octrees/tree_opt.npz \
    --out_dir $CKPT_ROOT/$SCENE/ \
    --overwrite

MISC

Project Vanilla NeRF to PlenOctree

A vanilla trained NeRF can also be converted to a plenoctree for fast inference. To mimic the view-independency propertity as in a NeRF-SH model, we project the vanilla NeRF model to SH basis functions by sampling view directions for every points in the space. Though this makes converting vanilla NeRF to a plenoctree possible, the projection process inevitability loses the quality of the model, even with a large amount of sampling view directions (which takes hours to finish). So we recommend to just directly train a NeRF-SH model end-to-end.

Below is a example of projecting a trained vanilla NeRF model from JaxNeRF repo (Download Link) to a plenoctree. After extraction, you can optimize & evaluate & compress the plenoctree just like usual:

export DATA_ROOT=./data/NeRF/nerf_synthetic/ 
export CKPT_ROOT=./data/JaxNeRF/jaxnerf_models/blender/ 
export SCENE=drums
export CONFIG_FILE=nerf_sh/config/misc/proj

python -m octree.extraction \
    --train_dir $CKPT_ROOT/$SCENE/ --is_jaxnerf_ckpt \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/ \
    --output $CKPT_ROOT/$SCENE/octrees/tree.npz \
    --projection_samples 100 \
    --radius 1.3

Note --projection_samples controls how many sampling view directions are used. More sampling view directions give better projection quality but takes longer time to finish. For example, for the drums scene in the NeRF-Synthetic dataset, 100 / 10000 sampling view directions takes about 2 mins / 2 hours to finish the plenoctree extraction. It produce raw plenoctrees with PSNR=22.49 / 23.84 (before optimization). Note that extraction from a NeRF-SH model produce a raw plenoctree with PSNR=25.01.

Owner
Alex Yu
Undergrad at UC Berkeley
Alex Yu
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 05, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022