PlenOctrees: NeRF-SH Training & Conversion

Overview

PlenOctrees Official Repo: NeRF-SH training and conversion

This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting part of the code release for:

PlenOctrees for Real Time Rendering of Neural Radiance Fields
Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, Angjoo Kanazawa

https://alexyu.net/plenoctrees

Please see the following repository for our C++ PlenOctrees volume renderer: https://github.com/sxyu/volrend

Setup

Please use conda for a replicable environment.

conda env create -f environment.yml
conda activate plenoctree
pip install --upgrade pip

Or you can install the dependencies manually by:

conda install pytorch torchvision cudatoolkit=11.0 -c pytorch
conda install tqdm
pip install -r requirements.txt

[Optional] Install GPU and TPU support for Jax. This is useful for NeRF-SH training. Remember to change cuda110 to your CUDA version, e.g. cuda102 for CUDA 10.2.

pip install --upgrade jax jaxlib==0.1.65+cuda110 -f https://storage.googleapis.com/jax-releases/jax_releases.html

NeRF-SH Training

We release our trained NeRF-SH models as well as converted plenoctrees at Google Drive. You can also use the following commands to reproduce the NeRF-SH models.

Training and evaluation on the NeRF-Synthetic dataset (Google Drive):

export DATA_ROOT=./data/NeRF/nerf_synthetic/
export CKPT_ROOT=./data/Plenoctree/checkpoints/syn_sh16/
export SCENE=chair
export CONFIG_FILE=nerf_sh/config/blender

python -m nerf_sh.train \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

python -m nerf_sh.eval \
    --chunk 4096 \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

Note for SCENE=mic, we adopt a warmup learning rate schedule (--lr_delay_steps 50000 --lr_delay_mult 0.01) to avoid unstable initialization.

Training and evaluation on TanksAndTemple dataset (Download Link) from the NSVF paper:

export DATA_ROOT=./data/TanksAndTemple/
export CKPT_ROOT=./data/Plenoctree/checkpoints/tt_sh25/
export SCENE=Barn
export CONFIG_FILE=nerf_sh/config/tt

python -m nerf_sh.train \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

python -m nerf_sh.eval \
    --chunk 4096 \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

PlenOctrees Conversion and Optimization

Before converting the NeRF-SH models into plenoctrees, you should already have the NeRF-SH models trained/downloaded and placed at ./data/PlenOctree/checkpoints/{syn_sh16, tt_sh25}/. Also make sure you have the training data placed at ./data/{NeRF/nerf_synthetic, TanksAndTemple}.

To reproduce our results in the paper, you can simplly run:

# NeRF-Synthetic dataset
python -m octree.task_manager octree/config/syn_sh16.json --gpus="0 1 2 3"

# TanksAndTemple dataset
python -m octree.task_manager octree/config/tt_sh25.json --gpus="0 1 2 3"

The above command will parallel all scenes in the dataset across the gpus you set. The json files contain dedicated hyper-parameters towards better performance (PSNR, SSIM, LPIPS). So in this setting, a 24GB GPU is needed for each scene and in averange the process takes about 15 minutes to finish. The converted plenoctree will be saved to ./data/PlenOctree/checkpoints/{syn_sh16, tt_sh25}/$SCENE/octrees/.

Below is a more straight-forward script for demonstration purpose:

export DATA_ROOT=./data/NeRF/nerf_synthetic/
export CKPT_ROOT=./data/PlenOctree/checkpoints/syn_sh16
export SCENE=chair
export CONFIG_FILE=nerf_sh/config/blender

python -m octree.extraction \
    --train_dir $CKPT_ROOT/$SCENE/ --is_jaxnerf_ckpt \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/ \
    --output $CKPT_ROOT/$SCENE/octrees/tree.npz

python -m octree.optimization \
    --input $CKPT_ROOT/$SCENE/tree.npz \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/ \
    --output $CKPT_ROOT/$SCENE/octrees/tree_opt.npz

python -m octree.evaluation \
    --input $CKPT_ROOT/$SCENE/octrees/tree_opt.npz \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

# [Optional] Only used for in-browser viewing.
python -m octree.compression \
    $CKPT_ROOT/$SCENE/octrees/tree_opt.npz \
    --out_dir $CKPT_ROOT/$SCENE/ \
    --overwrite

MISC

Project Vanilla NeRF to PlenOctree

A vanilla trained NeRF can also be converted to a plenoctree for fast inference. To mimic the view-independency propertity as in a NeRF-SH model, we project the vanilla NeRF model to SH basis functions by sampling view directions for every points in the space. Though this makes converting vanilla NeRF to a plenoctree possible, the projection process inevitability loses the quality of the model, even with a large amount of sampling view directions (which takes hours to finish). So we recommend to just directly train a NeRF-SH model end-to-end.

Below is a example of projecting a trained vanilla NeRF model from JaxNeRF repo (Download Link) to a plenoctree. After extraction, you can optimize & evaluate & compress the plenoctree just like usual:

export DATA_ROOT=./data/NeRF/nerf_synthetic/ 
export CKPT_ROOT=./data/JaxNeRF/jaxnerf_models/blender/ 
export SCENE=drums
export CONFIG_FILE=nerf_sh/config/misc/proj

python -m octree.extraction \
    --train_dir $CKPT_ROOT/$SCENE/ --is_jaxnerf_ckpt \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/ \
    --output $CKPT_ROOT/$SCENE/octrees/tree.npz \
    --projection_samples 100 \
    --radius 1.3

Note --projection_samples controls how many sampling view directions are used. More sampling view directions give better projection quality but takes longer time to finish. For example, for the drums scene in the NeRF-Synthetic dataset, 100 / 10000 sampling view directions takes about 2 mins / 2 hours to finish the plenoctree extraction. It produce raw plenoctrees with PSNR=22.49 / 23.84 (before optimization). Note that extraction from a NeRF-SH model produce a raw plenoctree with PSNR=25.01.

Owner
Alex Yu
Undergrad at UC Berkeley
Alex Yu
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Deep learning library for solving differential equations and more

DeepXDE Voting on whether we should have a Slack channel for discussion. DeepXDE is a library for scientific machine learning. Use DeepXDE if you need

Lu Lu 1.4k Dec 29, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022