PlenOctrees: NeRF-SH Training & Conversion

Overview

PlenOctrees Official Repo: NeRF-SH training and conversion

This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting part of the code release for:

PlenOctrees for Real Time Rendering of Neural Radiance Fields
Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, Angjoo Kanazawa

https://alexyu.net/plenoctrees

Please see the following repository for our C++ PlenOctrees volume renderer: https://github.com/sxyu/volrend

Setup

Please use conda for a replicable environment.

conda env create -f environment.yml
conda activate plenoctree
pip install --upgrade pip

Or you can install the dependencies manually by:

conda install pytorch torchvision cudatoolkit=11.0 -c pytorch
conda install tqdm
pip install -r requirements.txt

[Optional] Install GPU and TPU support for Jax. This is useful for NeRF-SH training. Remember to change cuda110 to your CUDA version, e.g. cuda102 for CUDA 10.2.

pip install --upgrade jax jaxlib==0.1.65+cuda110 -f https://storage.googleapis.com/jax-releases/jax_releases.html

NeRF-SH Training

We release our trained NeRF-SH models as well as converted plenoctrees at Google Drive. You can also use the following commands to reproduce the NeRF-SH models.

Training and evaluation on the NeRF-Synthetic dataset (Google Drive):

export DATA_ROOT=./data/NeRF/nerf_synthetic/
export CKPT_ROOT=./data/Plenoctree/checkpoints/syn_sh16/
export SCENE=chair
export CONFIG_FILE=nerf_sh/config/blender

python -m nerf_sh.train \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

python -m nerf_sh.eval \
    --chunk 4096 \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

Note for SCENE=mic, we adopt a warmup learning rate schedule (--lr_delay_steps 50000 --lr_delay_mult 0.01) to avoid unstable initialization.

Training and evaluation on TanksAndTemple dataset (Download Link) from the NSVF paper:

export DATA_ROOT=./data/TanksAndTemple/
export CKPT_ROOT=./data/Plenoctree/checkpoints/tt_sh25/
export SCENE=Barn
export CONFIG_FILE=nerf_sh/config/tt

python -m nerf_sh.train \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

python -m nerf_sh.eval \
    --chunk 4096 \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

PlenOctrees Conversion and Optimization

Before converting the NeRF-SH models into plenoctrees, you should already have the NeRF-SH models trained/downloaded and placed at ./data/PlenOctree/checkpoints/{syn_sh16, tt_sh25}/. Also make sure you have the training data placed at ./data/{NeRF/nerf_synthetic, TanksAndTemple}.

To reproduce our results in the paper, you can simplly run:

# NeRF-Synthetic dataset
python -m octree.task_manager octree/config/syn_sh16.json --gpus="0 1 2 3"

# TanksAndTemple dataset
python -m octree.task_manager octree/config/tt_sh25.json --gpus="0 1 2 3"

The above command will parallel all scenes in the dataset across the gpus you set. The json files contain dedicated hyper-parameters towards better performance (PSNR, SSIM, LPIPS). So in this setting, a 24GB GPU is needed for each scene and in averange the process takes about 15 minutes to finish. The converted plenoctree will be saved to ./data/PlenOctree/checkpoints/{syn_sh16, tt_sh25}/$SCENE/octrees/.

Below is a more straight-forward script for demonstration purpose:

export DATA_ROOT=./data/NeRF/nerf_synthetic/
export CKPT_ROOT=./data/PlenOctree/checkpoints/syn_sh16
export SCENE=chair
export CONFIG_FILE=nerf_sh/config/blender

python -m octree.extraction \
    --train_dir $CKPT_ROOT/$SCENE/ --is_jaxnerf_ckpt \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/ \
    --output $CKPT_ROOT/$SCENE/octrees/tree.npz

python -m octree.optimization \
    --input $CKPT_ROOT/$SCENE/tree.npz \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/ \
    --output $CKPT_ROOT/$SCENE/octrees/tree_opt.npz

python -m octree.evaluation \
    --input $CKPT_ROOT/$SCENE/octrees/tree_opt.npz \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

# [Optional] Only used for in-browser viewing.
python -m octree.compression \
    $CKPT_ROOT/$SCENE/octrees/tree_opt.npz \
    --out_dir $CKPT_ROOT/$SCENE/ \
    --overwrite

MISC

Project Vanilla NeRF to PlenOctree

A vanilla trained NeRF can also be converted to a plenoctree for fast inference. To mimic the view-independency propertity as in a NeRF-SH model, we project the vanilla NeRF model to SH basis functions by sampling view directions for every points in the space. Though this makes converting vanilla NeRF to a plenoctree possible, the projection process inevitability loses the quality of the model, even with a large amount of sampling view directions (which takes hours to finish). So we recommend to just directly train a NeRF-SH model end-to-end.

Below is a example of projecting a trained vanilla NeRF model from JaxNeRF repo (Download Link) to a plenoctree. After extraction, you can optimize & evaluate & compress the plenoctree just like usual:

export DATA_ROOT=./data/NeRF/nerf_synthetic/ 
export CKPT_ROOT=./data/JaxNeRF/jaxnerf_models/blender/ 
export SCENE=drums
export CONFIG_FILE=nerf_sh/config/misc/proj

python -m octree.extraction \
    --train_dir $CKPT_ROOT/$SCENE/ --is_jaxnerf_ckpt \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/ \
    --output $CKPT_ROOT/$SCENE/octrees/tree.npz \
    --projection_samples 100 \
    --radius 1.3

Note --projection_samples controls how many sampling view directions are used. More sampling view directions give better projection quality but takes longer time to finish. For example, for the drums scene in the NeRF-Synthetic dataset, 100 / 10000 sampling view directions takes about 2 mins / 2 hours to finish the plenoctree extraction. It produce raw plenoctrees with PSNR=22.49 / 23.84 (before optimization). Note that extraction from a NeRF-SH model produce a raw plenoctree with PSNR=25.01.

Owner
Alex Yu
Undergrad at UC Berkeley
Alex Yu
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
A deep learning CNN model to identify and classify and check if a person is wearing a mask or not.

Face Mask Detection The Model is designed to check if any human is wearing a mask or not. Dataset Description The Dataset contains a total of 11,792 i

1 Mar 01, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
This is an official implementation of the High-Resolution Transformer for Dense Prediction.

High-Resolution Transformer for Dense Prediction Introduction This is the official implementation of High-Resolution Transformer (HRT). We present a H

HRNet 403 Dec 13, 2022
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
New approach to benchmark VQA models

VQA Benchmarking This repository contains the web application & the python interface to evaluate VQA models. Documentation Please see the documentatio

4 Jul 25, 2022
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022