Implementation of "Deep Implicit Templates for 3D Shape Representation"

Overview

Deep Implicit Templates for 3D Shape Representation

Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020.

This repository is an implementation for Deep Implicit Templates. Full paper is available here.

Teaser Image

Citing DIT

If you use DIT in your research, please cite the paper:

@misc{zheng2020dit,
title={Deep Implicit Templates for 3D Shape Representation},
author={Zheng, Zerong and Yu, Tao and Dai, Qionghai and Liu, Yebin},
year={2020},
eprint={2011.14565},
archivePrefix={arXiv},
primaryClass={cs.CV}
}

Requirements

  • Ubuntu 18.04
  • Pytorch (tested on 1.7.0)
  • plyfile
  • matplotlib
  • ninja
  • pathos
  • tensorboardX
  • pyrender

Demo

This repo contains pre-trained models for cars, chairs, airplanes and sofas. After cloning the code repo, please run the following commands to generate the sofa template as well as 20 training sofa meshes with the color-coded canonical coordinates (i.e., the correspondences between the template and the meshes).

GPU_ID=0
CUDA_VISIBLE_DEVICES=${GPU_ID} python generate_template_mesh.py -e pretrained/sofas_dit --debug 
CUDA_VISIBLE_DEVICES=${GPU_ID} python generate_training_meshes.py -e pretrained/sofas_dit --debug --start_id 0 --end_id 20 --octree --keep_normalization
CUDA_VISIBLE_DEVICES=${GPU_ID} python generate_meshes_correspondence.py -e pretrained/sofas_dit --debug --start_id 0 --end_id 20

The canonical coordinates are stored as float RGB values in .ply files. You can render the color-coded meshes for visualization by running:

python render_correspondences.py  -i pretrained/sofas_dit/TrainingMeshes/2000/ShapeNet/[....].ply

Data Preparation

Please follow original setting of DeepSDF to prepare the SDF data in ./data folder.

Traing and Evaluation

After preparing the data following DeepSDF, you can train the model as:

GPU_ID=0
preprocessed_data_dir=./data
CUDA_VISIBLE_DEVICES=${GPU_ID} python train_deep_implicit_templates.py -e examples/sofas_dit --debug --batch_split 2 -c latest -d ${preprocessed_data_dir}

To evaluate the reconstruction accuracy (Tab.2 in our paper), please run:

GPU_ID=0
preprocessed_data_dir=./data
CUDA_VISIBLE_DEVICES=${GPU_ID} python reconstruct_deep_implicit_templates.py -e examples/sofas_dit -c 2000 --split examples/splits/sv2_sofas_test.json -d ${preprocessed_data_dir} --skip --octree
CUDA_VISIBLE_DEVICES=${GPU_ID} python evaluate.py -e examples/sofas_dit -c 2000 -s examples/splits/sv2_sofas_test.json -d ${preprocessed_data_dir} --debug

Due the the randomness of the points sampled from the meshes, the numeric results will vary across multiple reruns of the same shape, and will likely differ from those produced in the paper.

More evaluation code is coming.

Acknowledgements

This code repo is heavily based on DeepSDF. We thank the authors for their great job!

License

DeepSDF is relased under the MIT License. See the [LICENSE file][5] for more details.

Owner
Zerong Zheng
期待你发现
Zerong Zheng
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS

VITA 122 Dec 14, 2022
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
Personalized Federated Learning using Pytorch (pFedMe)

Personalized Federated Learning with Moreau Envelopes (NeurIPS 2020) This repository implements all experiments in the paper Personalized Federated Le

Charlie Dinh 226 Dec 30, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022