DeepVoxels is an object-specific, persistent 3D feature embedding.

Overview

DeepVoxels

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of an object in a deeplearning framework. At test time, the training set can be discarded, and DeepVoxels can be used to render novel views of the same object.

deepvoxels_video

Usage

Installation

This code was developed in python 3.7 and pytorch 1.0. I recommend to use anaconda for dependency management. You can create an environment with name "deepvoxels" with all dependencies like so:

conda env create -f environment.yml

High-Level structure

The code is organized as follows:

  • dataio.py loads training and testing data.
  • data_util.py and util.py contain utility functions.
  • run_deepvoxels.py contains the training and testing code as well as setting up the dataset, dataloading, command line arguments etc.
  • deep_voxels.py contains the core DeepVoxels model.
  • custom_layers.py contains implementations of the integration and occlusion submodules.
  • projection.py contains utility functions for 3D and projective geometry.

Data

The datasets have been rendered from a set of high-quality 3D scans of a variety of objects. The datasets are available for download here. Each object has its own directory, which is the directory that the "data_root" command-line argument of the run_deepvoxels.py script is pointed to.

Coordinate and camera parameter conventions

This code uses an "OpenCV" style camera coordinate system, where the Y-axis points downwards (the up-vector points in the negative Y-direction), the X-axis points right, and the Z-axis points into the image plane. Camera poses are assumed to be in a "camera2world" format, i.e., they denote the matrix transform that transforms camera coordinates to world coordinates.

The code also reads an "intrinsics.txt" file from the dataset directory. This file is expected to be structured as follows:

f cx cy
origin_x origin_y origin_z
near_plane (if 0, defaults to sqrt(3)/2)
scale
img_height img_width

The focal length, cx and cy are in pixels. (origin_x, origin_y, origin_z) denotes the origin of the voxel grid in world coordinates. The near plane is also expressed in world units. Per default, each voxel has a sidelength of 1 in world units - the scale is a factor that scales the sidelength of each voxel. Finally, height and width are the resolution of the image.

To create your own dataset, I recommend using the amazing, open-source Colmap. Follow the instructions on the website to install it. I have written a little wrapper in python that will automatically reconstruct a directory of images, and then extract the camera extrinsic & intrinsic camera parameters. It can be used like so:

python colmap_wrapper.py --img_dir [path to directory with images] \
                         --trgt_dir [path where output will be written to] 

To get the scale and origin of the voxel grid as well as the near plane, one has to inspect the reconstructed point cloud and manually edit the intrinsics.txt file written out by colmap_wrapper.py.

Training

  • See python run_deepvoxels.py --help for all train options. Example train call:
python run_deepvoxels.py --train_test train \
                         --data_root [path to directory with dataset] \
                         --logging_root [path to directory where tensorboard summaries and checkpoints should be written to] 

To monitor progress, the training code writes tensorboard summaries every 100 steps into a "runs" subdirectory in the logging_root.

Testing

Example test call:

python run_deepvoxels.py --train_test test \
                         --data_root [path to directory with dataset] ]
                         --logging_root [path to directoy where test output should be written to] \
                         --checkpoint [path to checkpoint]

Misc

Citation:

If you find our work useful in your research, please consider citing:

@inproceedings{sitzmann2019deepvoxels,
	author = {Sitzmann, Vincent 
	          and Thies, Justus 
	          and Heide, Felix 
	          and Nie{\ss}ner, Matthias 
	          and Wetzstein, Gordon 
	          and Zollh{\"o}fer, Michael},
	title = {DeepVoxels: Learning Persistent 3D Feature Embeddings},
	booktitle = {Proc. CVPR},
	year={2019}
}

Follow-up work

Check out our new project, Scene Representation Networks, where we replace the voxel grid with a continuous function that naturally generalizes across scenes and smoothly parameterizes scene surfaces!

Submodule "pytorch_prototyping"

The code in the subdirectory "pytorch_prototyping" comes from a little library of custom pytorch modules that I use throughout my research projects. You can find it here.

Other cool projects

Some of the code in this project is based on code from these two very cool papers:

Check them out!

Contact:

If you have any questions, please email Vincent Sitzmann at [email protected].

Owner
Vincent Sitzmann
Incoming Assistant Professor @mit EECS. I'm researching neural scene representations - the way neural networks learn to represent information on our world.
Vincent Sitzmann
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
A comprehensive list of published machine learning applications to cosmology

ml-in-cosmology This github attempts to maintain a comprehensive list of published machine learning applications to cosmology, organized by subject ma

George Stein 290 Dec 29, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

ProMo (Prosody Morph) Questions? Comments? Feedback? Chat with us on gitter! A library for manipulating pitch and duration in an algorithmic way, for

Tim 71 Jan 02, 2023
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022
GUI for a Vocal Remover that uses Deep Neural Networks.

GUI for a Vocal Remover that uses Deep Neural Networks.

4.4k Jan 07, 2023
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
Bytedance Inc. 2.5k Jan 06, 2023
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022