A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

Related tags

Deep LearningA-SDF
Overview

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

This repository contains the official implementation for A-SDF introduced in the following paper: A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021). The code is developed based on the Pytorch framework(1.6.0) with python 3.7.6. This repo includes training code and generated data from shape2motion.

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)
JitengMu, Weichao Qiu, Adam Kortylewski, Alan Yuille, Nuno Vasconcelos, Xiaolong Wang
ICCV 2021

The project page with more details is at https://jitengmu.github.io/A-SDF/.

Citation

If you find our code or method helpful, please use the following BibTex entry.

@article{mu2021asdf,
  author    = {Jiteng Mu and
               Weichao Qiu and
               Adam Kortylewski and
               Alan L. Yuille and
               Nuno Vasconcelos and
               Xiaolong Wang},
  title     = {{A-SDF:} Learning Disentangled Signed Distance Functions for Articulated
               Shape Representation},
  journal    = {arXiv preprint arXiv:2104.07645 },
  year      = {2021},
}

Data preparation and layout

Please 1) download dataset and put data in the data directory, and 2) download checkpoints and put the checkpoint in the corresponding example/ directory, e.g. it should look like examples/laptop/laptop-asdf/Model_Parameters/1000.pth.

The dataset is structured as follows, can be, e.g. shape2motion/shape2motion-1-view/shape2motion-2-view/rbo :

data/
    SdfSamples/
        
   
    /
            
    
     /
                
     
      .npz
    SurfaceSamples/
        
      
       /
            
       
        / 
        
         .ply NormalizationParameters/ 
         
          / 
          
           / 
           
            .ply 
           
          
         
        
       
      
     
    
   

Splits of train/test files are stored in a simple JSON format. For examples, see examples/splits/.

How to Use A-SDF

Use the class laptop as illustration. Feel free to change to stapler/washing_machine/door/oven/eyeglasses/refrigerator for exploring other categories.

(a) Train a model

To train a model, run

python train.py -e examples/laptop/laptop-asdf/

(b) Reconstruction

To use a trained model to reconstruct explicit mesh representations of shapes from the test set, run the follow scripts, where -m recon_testset_ttt for inference with test-time adaptation and -m recon_testset otherwise.

python test.py -e examples/laptop/laptop-asdf/ -c 1000 -m recon_testset_ttt

To compute the chamfer distance, run:

python eval.py -e examples/laptop/laptop-asdf/ -c 1000 -m recon_testset_ttt

(c) Generation

To use a trained model to genrate explicit mesh of unseen articulations (specified in asdf/asdf_reconstruct.py) of shapes from the test set, run the follow scripts. Note that -m mode should be consistent with the one for reconstruction: -m generation_ttt for inference with test-time adaptation and -m generation otherwise.

python test.py -e examples/laptop/laptop-asdf/ -c 1000 -m generation_ttt
python eval.py -e examples/laptop/laptop-asdf/ -c 1000 -m generation_ttt

(d) Interpolation

To use a trained model to interpolate explicit mesh of unseen articulations (specified in asdf/asdf_reconstruct.py) of shapes from the test set, run:

python test.py -e examples/laptop/laptop-asdf/ -c 1000 -m inter_testset
python eval.py -e examples/laptop/laptop-asdf/ -c 1000 -m inter_testset

(e) Partial Point Cloud

To use a trained model to reconstruct and generate explicit meshes from partial pointcloud: (1) download the partial point clouds dataset laptop-1/2-view-0.025.zip from dataset first and (2) put the laptop checkpoint trained on shape2motion in examples/laptop/laptop-asdf-1/2-view/, (3) then run the following scripts, where --dataset shape2motion-1-view for partial point clouds generated from a single depth image and --dataset shape2motion-2-view for the case generated from two depth images of different view points, -m can be one of recon_testset/recon_testset_ttt/generation/generation_ttt, similar to previous experiments.

python test.py -e examples/laptop/laptop-asdf-1-view/ -c 1000 -m recon_testset_ttt/generation_ttt --dataset shape2motion-1-view
python eval.py -e examples/laptop/laptop-asdf-1-view/ -c 1000 -m recon_testset_ttt/generation_ttt

(f) RBO dataset

To test a model on the rbo dataset: (1) download the generated partial point clouds of the laptop class from the rbo dataset --- rbo_laptop_release_test.zip from dataset first, (2) put the laptop checkpoint trained on shape2motion in examples/laptop/laptop-asdf-rbo/, (3) then run the following,

python test.py -e examples/laptop/laptop-asdf-rbo/ -m recon_testset_ttt/generation_ttt -c 1000 --dataset rbo
python eval_rbo.py -e examples/laptop/laptop-asdf-rbo/ -m recon_testset_ttt/generation_ttt -c 1000

Dataset generation details are included in the 'dataset_generation/rbo'.

Data Generation

Stay tuned. We follow (1) ANSCH to create URDF for shape2motion dataset,(2) Manifold to create watertight meshes, (3) and modified mesh_to_sdf for generating sampled points and sdf values.

Acknowledgement

The code is heavily based on Jeong Joon Park's DeepSDF from facebook.

Owner
Ph.D. student
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Robert Roman 473 Jan 09, 2023
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
End-to-end beat and downbeat tracking in the time domain.

WaveBeat End-to-end beat and downbeat tracking in the time domain. | Paper | Code | Video | Slides | Setup First clone the repo. git clone https://git

Christian J. Steinmetz 60 Dec 24, 2022
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022