[SIGGRAPH 2021 Asia] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning

Overview

DeepVecFont

This is the official Pytorch implementation of the paper:

Yizhi Wang and Zhouhui Lian. DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning. SIGGRAPH 2021 Asia. 2021.

Paper: arxiv

Demo

Few-shot generation

Given a few vector glyphs of a font as reference, our model generates the full vector font:

Input glyphs:

Synthesized glyphs by DeepVecFont:


Input glyphs:

Synthesized glyphs by DeepVecFont:


Input glyphs:

Synthesized glyphs by DeepVecFont:


Installation

Requirement

  • python 3.9
  • Pytorch 1.9 (it may work on some lower versions, but not tested)

Please use Anaconda to build the environment:

conda create -n dvf python=3.9
source activate dvf

Install pytorch via the instructions.

Install diffvg

We utilize diffvg to refine our generated vector glyphs in the testing phase. Please go to https://github.com/BachiLi/diffvg see how to install it.

Data and Pretrained-model

Dataset

Please download the vecfont_dataset dir and put it under ./data/. (This dataset is a subset from SVG-VAE, ICCV 2019. We will release more information about how to create from your own data.)

Please Download them and put it under ./data/.

Pretrained model

Please download the dvf_neural_raster dir and put it under ./experiments/.

  • The Image Super-resolution model Download links: Google Drive.

Please download the image_sr dir and put it under ./experiments/. Note that recently we switched from Tensorflow to Pytorch, we may update the models that have better performances.

  • The Main model Download links: [will be uploaded soon].

Training and Testing

To train our main model, run

python main.py --mode train --experiment_name dvf --model_name main_model

The configurations can be found in options.py.

To test our main model, run

python test_sf.py --mode test --experiment_name dvf --model_name main_model --test_epoch 1500 --batch_size 1 --mix_temperature 0.0001 --gauss_temperature 0.01

This will output the synthesized fonts without refinements. Note that batch_size must be set to 1.

To refinement the vector glyphs, run

python refinement.mp.py --experiment_name dvf --fontid 14 --candidate_nums 20 

where the fontid denotes the index of testing font.

We have pretrained the neural rasterizer and image super-resolution model. If you want to train them yourself:

To train the neural rasterizer:

python train_nr.py --mode train --experiment_name dvf --model_name neural_raster

To train the image super-resolution model:

python train_sr.py --mode train --name image_sr
Owner
Yizhi Wang
Yizhi Wang
Project to create an open-source 6 DoF input device

6DInputs A Project to create open-source 3D printed 6 DoF input devices Note the plural ('6DInputs' and 'devices') in the headings. We would like seve

RepRap Ltd 47 Jul 28, 2022
Code Release for the paper "TriBERT: Full-body Human-centric Audio-visual Representation Learning for Visual Sound Separation"

TriBERT This repository contains the code for the NeurIPS 2021 paper titled "TriBERT: Full-body Human-centric Audio-visual Representation Learning for

UBC Computer Vision Group 8 Aug 31, 2022
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021
Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

tonne 1.4k Dec 29, 2022
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

150 Dec 26, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

George Gunter 4 Nov 14, 2022
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 07, 2021
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022
TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection

TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection; Accepted by ICCV2021. Note: The complete code (including training and t

S.X.Zhang 84 Dec 13, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022