Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Overview

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution

visitors

Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte
Computer Vision Lab, ETH Zurich, Switzerland

[Paper] [Code] [Training Code]

Our work is the beginning rather than the end of real image super-resolution.


  • News (2021-08-31): We upload the training code.
  • News (2021-08-24): We upload the BSRGAN degradation model.
from utils import utils_blindsr as blindsr
img_lq, img_hq = blindsr.degradation_bsrgan(img, sf=4, lq_patchsize=72)
  • News (2021-07-23): After rejection by CVPR 2021, our paper is accepted by ICCV 2021. For the sake of fairness, we will not update the trained models in our camera-ready version. However, we may updata the trained models in github.
  • News (2021-05-18): Add trained BSRGAN model for scale factor 2.
  • News (2021-04): Our degradation model for face image enhancement: https://github.com/vvictoryuki/BSRGAN_implementation

Training

  1. Download KAIR: git clone https://github.com/cszn/KAIR.git
  2. Put your training high-quality images into trainsets/trainH or set "dataroot_H": "trainsets/trainH"
  3. Train BSRNet
    1. Modify train_bsrgan_x4_psnr.json e.g., "gpu_ids": [0], "dataloader_batch_size": 4
    2. Training with DataParallel
    python main_train_psnr.py --opt options/train_bsrgan_x4_psnr.json
    1. Training with DistributedDataParallel - 4 GPUs
    python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 main_train_psnr.py --opt options/train_bsrgan_x4_psnr.json  --dist True
  4. Train BSRGAN
    1. Put BSRNet model (e.g., '400000_G.pth') into superresolution/bsrgan_x4_gan/models
    2. Modify train_bsrgan_x4_gan.json e.g., "gpu_ids": [0], "dataloader_batch_size": 4
    3. Training with DataParallel
    python main_train_gan.py --opt options/train_bsrgan_x4_gan.json
    1. Training with DistributedDataParallel - 4 GPUs
    python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 main_train_gan.py --opt options/train_bsrgan_x4_gan.json  --dist True
  5. Test BSRGAN model 'xxxxxx_E.pth' by modified main_test_bsrgan.py
    1. 'xxxxxx_E.pth' is more stable than 'xxxxxx_G.pth'

Some visual examples: oldphoto2; butterfly; comic; oldphoto3; oldphoto6; comic_01; comic_03; comic_04


Testing code

Main idea

Design a new degradation model to synthesize LR images for training:

  • 1) Make the blur, downsampling and noise more practical
    • Blur: two convolutions with isotropic and anisotropic Gaussian kernels from both the HR space and LR space
    • Downsampling: nearest, bilinear, bicubic, down-up-sampling
    • Noise: Gaussian noise, JPEG compression noise, processed camera sensor noise
  • 2) Degradation shuffle: instead of using the commonly-used blur/downsampling/noise-addition pipeline, we perform randomly shuffled degradations to synthesize LR images

Some notes on the proposed degradation model:

  • The degradation model is mainly designed to synthesize degraded LR images. Its most direct application is to train a deep blind super-resolver with paired LR/HR images. In particular, the degradation model can be performed on a large dataset of HR images to produce unlimited perfectly aligned training images, which typically do not suffer from the limited data issue of laboriously collected paired data and the misalignment issue of unpaired training data.

  • The degradation model tends to be unsuited to model a degraded LR image as it involves too many degradation parameters and also adopts a random shuffle strategy.

  • The degradation model can produce some degradation cases that rarely happen in real-world scenarios, while this can still be expected to improve the generalization ability of the trained deep blind super-resolver.

  • A DNN with large capacity has the ability to handle different degradations via a single model. This has been validated multiple times. For example, DnCNN is able to handle SISR with different scale factors, JPEG compression deblocking with different quality factors and denoising for a wide range of noise levels, while still having a performance comparable to VDSR for SISR. It is worth noting that even when the super-resolver reduces the performance for unrealistic bicubic downsampling, it is still a preferred choice for real SISR.

  • One can conveniently modify the degradation model by changing the degradation parameter settings and adding more reasonable degradation types to improve the practicability for a certain application.

Comparison

These no-reference IQA metrics, i.e., NIQE, NRQM and PI, do not always match perceptual visual quality [1] and the IQA metric should be updated with new SISR methods [2]. We further argue that the IQA metric for SISR should also be updated with new image degradation types, which we leave for future work.

[1] "NTIRE 2020 challenge on real-world image super-resolution: Methods and results." CVPRW, 2020.
[2] "PIPAL: a large-scale image quality assessment dataset for perceptual image restoration." ECCV, 2020.

More visual results on RealSRSet dataset

Left: real images | Right: super-resolved images with scale factor 4

Visual results on DPED dataset

Without using any prior information of DPED dataset for training, our BSRGAN still performs well.

Citation

@inproceedings{zhang2021designing,
  title={Designing a Practical Degradation Model for Deep Blind Image Super-Resolution},
  author={Zhang, Kai and Liang, Jingyun and Van Gool, Luc and Timofte, Radu},
  booktitle={arxiv},
  year={2021}
}

Acknowledgments

This work was partly supported by the ETH Zurich Fund (OK), a Huawei Technologies Oy (Finland) project, and an Amazon AWS grant.

Owner
Kai Zhang
Image Restoration; Inverse Problems
Kai Zhang
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
A machine learning package for streaming data in Python. The other ancestor of River.

scikit-multiflow is a machine learning package for streaming data in Python. creme and scikit-multiflow are merging into a new project called River. W

670 Dec 30, 2022
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
A TikTok-like recommender system for GitHub repositories based on Gorse

GitRec GitRec is the missing recommender system for GitHub repositories based on Gorse. Architecture The trending crawler crawls trending repositories

337 Jan 04, 2023
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
OcclusionFusion: realtime dynamic 3D reconstruction based on single-view RGB-D

OcclusionFusion (CVPR'2022) Project Page | Paper | Video Overview This repository contains the code for the CVPR 2022 paper OcclusionFusion, where we

Wenbin Lin 193 Dec 15, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021
PyTorch version implementation of DORN

DORN_PyTorch This is a PyTorch version implementation of DORN Reference H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao: Deep Ordinal Regression

Zilin.Zhang 3 Apr 27, 2022
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022