Turning pixels into virtual points for multimodal 3D object detection.

Related tags

Deep LearningMVP
Overview

Multimodal Virtual Point 3D Detection

Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection,
Tianwei Yin, Xingyi Zhou, Philipp Krähenbühl,
arXiv technical report (arXiv 2111.06881 )

@article{yin2021multimodal,
  title={Multimodal Virtual Point 3D Detection},
  author={Yin, Tianwei and Zhou, Xingyi and Kr{\"a}henb{\"u}hl, Philipp},
  journal={NeurIPS},
  year={2021},
}

Contact

Any questions or suggestions are welcome!

Tianwei Yin [email protected] Xingyi Zhou [email protected]

Abstract

Lidar-based sensing drives current autonomous vehicles. Despite rapid progress, current Lidar sensors still lag two decades behind traditional color cameras in terms of resolution and cost. For autonomous driving, this means that large objects close to the sensors are easily visible, but far-away or small objects comprise only one measurement or two. This is an issue, especially when these objects turn out to be driving hazards. On the other hand, these same objects are clearly visible in onboard RGB sensors. In this work, we present an approach to seamlessly fuse RGB sensors into Lidar-based 3D recognition. Our approach takes a set of 2D detections to generate dense 3D virtual points to augment an otherwise sparse 3D point-cloud. These virtual points naturally integrate into any standard Lidar-based 3D detectors along with regular Lidar measurements. The resulting multi-modal detector is simple and effective. Experimental results on the large-scale nuScenes dataset show that our framework improves a strong CenterPoint baseline by a significant 6.6 mAP, and outperforms competing fusion approaches.

Main results

3D detection on nuScenes validation set

MAP ↑ NDS ↑
CenterPoint-Voxel 59.5 66.7
CenterPoint-Voxel + MVP 66.0 69.9
CenterPoint-Pillar 52.4 61.5
CenterPoint-Voxel + MVP 62.8 66.2

3D detection on nuScenes test set

MAP ↑ NDS ↑ PKL ↓
MVP 66.4 70.5 0.603

Use MVP

Installation

Please install CenterPoint and CenterNet2. Make sure to add a link to CenterNet2 folder in your python path. We will use CenterNet2 for 2D instance segmentation and CenterPoint for 3D detection.

Getting Started

Download nuscenes data and organise as follows

# For nuScenes Dataset         
└── NUSCENES_DATASET_ROOT
       ├── samples       <-- key frames
       ├── sweeps        <-- frames without annotation
       ├── maps          <-- unused
       ├── v1.0-trainval <-- metadata

Create a symlink to the dataset root in both CenterPoint and MVP's root directories.

mkdir data && cd data
ln -s DATA_ROOT nuScenes

Remember to change the DATA_ROOT to the actual path in your system.

Generate Virtual Points

Download the centernet2 model from here and place it in the root directory.

Use the following command in the current directory to generate virtual points for nuscenes training and validation sets. The points will be saved to data/nuScenes/samples or sweeps/LIDAR_TOP_VIRTUAL.

python virtual_gen.py --info_path data/nuScenes/infos_train_10sweeps_withvelo_filter_True.pkl  

You will need about 80GB space and the whole process will take 10 to 20 hours using a single GPU. You can also download the precomputed virtual points from here.

Create Data

Go to the CenterPoint's root directory and run

# nuScenes
python tools/create_data.py nuscenes_data_prep --root_path=NUSCENES_TRAINVAL_DATASET_ROOT --version="v1.0-trainval" --nsweeps=10 --virtual True 

if you want to reproduce CenterPoint baseline's results, then also run the following command

# nuScenes
python tools/create_data.py nuscenes_data_prep --root_path=NUSCENES_TRAINVAL_DATASET_ROOT --version="v1.0-trainval" --nsweeps=10 --virtual False 

In the end, the data and info files should be organized as follows

# For nuScenes Dataset 
└── CenterPoint
       └── data    
              └── nuScenes 
                     ├── maps          <-- unused
                     |── v1.0-trainval <-- metadata and annotations
                     |── infos_train_10sweeps_withvelo_filter_True.pkl <-- train annotations
                     |── infos_val_10sweeps_withvelo_filter_True.pkl <-- val annotations
                     |── dbinfos_train_10sweeps_withvelo_virtual.pkl <-- GT database info files
                     |── gt_database_10sweeps_withvelo_virtual <-- GT database 
                     |── samples       <-- key frames
                        |── LIDAR_TOP
                        |── LIDAR_TOP_VIRTUAL
                     └── sweeps       <-- frames without annotation
                        |── LIDAR_TOP
                        |── LIDAR_TOP_VIRTUAL

Train & Evaluate in Command Line

Go to CenterPoint's root directory and use the following command to start a distributed training using 4 GPUs. The models and logs will be saved to work_dirs/CONFIG_NAME

python -m torch.distributed.launch --nproc_per_node=4 ./tools/train.py CONFIG_PATH

For distributed testing with 4 gpus,

python -m torch.distributed.launch --nproc_per_node=4 ./tools/dist_test.py CONFIG_PATH --work_dir work_dirs/CONFIG_NAME --checkpoint work_dirs/CONFIG_NAME/latest.pth 

For testing with one gpu and see the inference time,

python ./tools/dist_test.py CONFIG_PATH --work_dir work_dirs/CONFIG_NAME --checkpoint work_dirs/CONFIG_NAME/latest.pth --speed_test 

MODEL ZOO

We experiment with VoxelNet and PointPillars architectures on nuScenes.

VoxelNet

Model Validation MAP Validation NDS Link
centerpoint_baseline 59.5 66.7 URL
Ours 66.0 69.9 URL

PointPillars

Model Validation MAP Validation NDS Link
centerpoint_baseline 52.4 61.5 URL
Ours 62.8 66.2 URL

Test set models and predictions will be updated soon.

License

MIT License.

Owner
Tianwei Yin
Tianwei Yin
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1)Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

AI-Health @NSCC-gz 83 Dec 24, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022