Classify music genre from a 10 second sound stream using a Neural Network.

Overview

MusicGenreClassification

MusicGenreClassification

Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University.

Featured in Medium.

Abstract

This paper discuss the task of classifying the music genre of a sound sample.

Introduction

When I decided to work on the field of sound processing I thought that genre classification is a parallel problem to the image classification. To my surprise I did not found too many works in deep learning that tackled this exact problem. One paper that did tackle this classification problem is Tao Feng’s paper [1] from the university of Illinois. I did learned a lot from this paper, but honestly, they results the paper presented were not impressive.

So I had to look on other, related but not exact papers. A very influential paper was Deep content-based music recommendation [2] This paper is about content-base music recommendation using deep learning techniques. The way they got the dataset, and the preprocessing they had done to the sound had really enlightened my implementation. Also, this paper was mentioned lately on “Spotify” blog [3]. Spotify recruited a deep learning intern that based on the above work implemented a music recommendation engine. His simple yet very efficient network made me think that Tao’s RBM was not the best approach and there for my implementation included a CNN instead like in the Spotify blog. One very important note is that Tao’s work published result only for 2,3 and 4 classes classification. Obviously he got really good result for 2 classes classification, but the more classes he tried to classify the poorer the result he got. My work classify the whole 10 classes challenge, a much more difficult task. A sub task for this project was to learn a new SDK for deep learning, I have been waiting for an opportunity to learn Google’s new TensorFlow[4]. This project is implemented in Python and the Machine Learning part is using TensorFlow.

The Dataset

Getting the dataset might be the most time consuming part of this work. Working with music is a big pain, every file is usually a couple of MBs, there are variety of qualities and parameters of recording (Number of frequencies, Bits per second, etc…). But the biggest pain is copyrighting, there are no legit famous songs dataset as they would cost money. Tao’s paper based on a dataset called GTZAN[5]. This dataset is quit small (100 songs per genre X 10 genres = overall 1,000 songs), and the copyright permission is questionable. This is from my perspective one of the reasons that held him from getting better results. So, I looked up for generating more data to learn from. Eventually I found MSD[6] dataset (Million Song Dataset). It is a freely-available collection of audio features and metadata for a million contemporary popular music tracks. Around 280 GB of pure metadata. There is a project on top of MSD called tagtraum[7] which classify MSD songs into genres. The problem now was to get the sound itself, here is where I got a little creative. I found that one of the tags every song have in the dataset is an id from a provider called 7Digital[8]. 7Digital is a SaaS provider for music application, it basically let you stream music for money. I signed up to 7Digital as a developer and after their approval i could access their API. Still any song stream costs money, But I found out that they are enabling to preview random 30 seconds of a song to the user before paying for them. This is more than enough for my deep learning task, So I wrote “previewDownloader.py” that downloads for every song in the MSD dataset a 30 sec preview. Unfortunately I had only my laptop for this mission, so I had to settle with only 1% of the dataset (around 2.8GB).

The genres I am classifying are:

  1. blues
  2. classical
  3. country
  4. disco
  5. hiphop
  6. jazz
  7. metal
  8. pop
  9. reggae
    10.rock

Music genre popularity

Preprocessing the data

Having a big data set isn't enough, in oppose to image tasks I cannot work straight on the raw sound sample, a quick calculation: 30 seconds × 22050 sample/sec- ond = 661500 length of vector, which would be heavy load for a convention machine learning method.

Following all the papers I read and researching a little on acoustic analysis, It is quit obvious that the industry is using Mel-frequency cepstral coefficients (MFCC) as the feature vector for the sound sample, I used librosa[9] implementation.

MFCCs are derived as follows:

  1. Take the Fourier transform of (a windowed excerpt of) a signal.
  2. Map the powers of the spectrum obtained above onto the mel scale, using triangular overlapping windows.
  3. Take the logs of the powers at each of the mel frequencies.
  4. Take the discrete cosine transform of the list of mel log powers, as if it were a signal.
  5. The MFCCs are the amplitudes of the resulting spectrum.

I had tried several window size and stride values, the best result I got was for size of 100ms and a stride of 40ms.

One more point was that Tao’s paper used MFCC features (step 5) while Sander used strait mel-frequencies (step 2).

MEL ppower over time

I tried both approaches and found out that I got extremely better results using just the mel-frequencies, but the trade-off was the training time of-course. Before continue to building a network I wanted to visualise the preprocessed data set, I implemented this through the t-SNE[10] algorithm.Below you can see the t-SNE graph for MFCC (step 5) and Mel-Frequencies (step 2):

t-SNE MFCC samples as genres

t-SNE mel-spectogram samples as genres

The Graph

After seeing the results Tao and Sander reached I decided to go with a convolu- tional neural network implementation. The network receive a 599 vector of mea-frequen- cy beans, each containing 128 frequencies which describe their window. The network consist with 3 hidden layers and between them I am doing a max pooling. Finally a fully connected layer and than softmax to end up with a 10 dimensional vector for our ten genre classes

Nural Network

I did implement another network for MFCC feature instead of mel-frequencies, the only differences are in the sizes (13 frequencies per window instead of 128).

Visualisation of various filters (from Sander’s paper):

Filters visualization

• Filter 14 seems to pick up vibrato singing. • Filter 242 picks up some kind of ringing ambience. • Filter 250 picks up vocal thirds, i.e. multiple singers singing the same thing, but the notes are a major third (4 semitones) apart. • Filter 253 picks up various types of bass drum sounds.

Results

As I explained in the introduction, the papers I based my work on did not solve the exact problem I did, for example Tao’s paper published results for classifying 2,3 and 4 classes (Genres).

Tao Feng's results

I did looked for benchmarks outside the deep learning field and I found a paper titled “A BENCHMARK DATASET FOR AUDIO CLASSIFICATION AND CLUSTERING” [11]. This paper benchmark a very similar task to mine, the genres it classifies: Blues, Electronic, Jazz, Pop, HipHop, Rock, Folk, Alternative, Funk.

Benchmark results

My results:

My results

Code

Documentation

• previewDownloader.py: USAGE: python previewDownloader.py [path to MSD data] This script iterate over all ‘.h5’ in a directory and download a 30 seconds sample from 7digital.

• preproccess.py: USAGE: python preproccess.py [path to MSD mp3 data] This script pre-processing the sound files. Calculating MFCC for a sliding window and saving the result in a ‘.pp’ file.

• formatInput.py: USAGE: python formatInput.py [path to MSD pp data] The script iterates over all ‘.pp’ files and generates ‘data’ and ‘labels’ that will be used as an input to the NN. Moreover, the script output a t-SNE graph at the end.

• train.py: USAGE: python train.py This script builds the neural network and feeds it with ‘data’ and ‘labels’. When it is done it will save ‘model.final’.

Complete Installation

References

[1] Tao Feng, Deep learning for music genre classification, University of Illinois. https://courses.engr.illinois.edu/ece544na/fa2014/Tao_Feng.pdf [2]Aar̈onvandenOord,SanderDieleman,BenjaminSchrauwen,Deepcontent- based music recommendation. http://papers.nips.cc/paper/5004-deep-content-based- music-recommendation.pdf [3] SANDER DIELEMAN, RECOMMENDING MUSIC ON SPOTIFY WITH DEEP LEARNING, AUGUST 05, 2014. http://benanne.github.io/2014/08/05/spotify-cnns.html [4] https://www.tensorflow.org [5] GTZAN Genre Collection. http://marsyasweb.appspot.com/download/ data_sets/ [6] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The Million Song Dataset. In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011), 2011. http:// labrosa.ee.columbia.edu/millionsong/ [7] Hendrik Schreiber. Improving genre annotations for the million song dataset. In Proceedings of the 16th International Conference on Music Information Retrieval (IS- MIR), pages 241-247, 2015. http://www.tagtraum.com/msd_genre_datasets.html [8] https://www.7digital.com [9] https://github.com/bmcfee/librosa [10] http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html [11] Helge Homburg, Ingo Mierswa, Bu l̈ent Mo l̈ler, Katharina Morik and Michael Wurst, A BENCHMARK DATASET FOR AUDIO CLASSIFICATION AND CLUSTERING, University of Dortmund, AI Unit. http://sfb876.tu-dortmund.de/PublicPublicationFiles/ homburg_etal_2005a.pdf

Author

Matan Lachmish a.k.a The Big Fat Ninja The Big Fat Ninja
https://thebigfatninja.xyz

attribution

Icon made by Freepik from www.flaticon.com

License

MusicGenreClassification is available under the MIT license. See the LICENSE file for more info.

Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.

Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec

lu zhang 48 Aug 19, 2022
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Simple Dynamic Batching Inference

Simple Dynamic Batching Inference 解决了什么问题? 众所周知,Batch对于GPU上深度学习模型的运行效率影响很大。。。 是在Inference时。搜索、推荐等场景自带比较大的batch,问题不大。但更多场景面临的往往是稀碎的请求(比如图片服务里一次一张图)。 如果

116 Jan 01, 2023
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
AI that generate music

PianoGPT ai that generate music try it here https://share.streamlit.io/annasajkh/pianogpt/main/main.py or here https://huggingface.co/spaces/Annas/Pia

Annas 28 Nov 27, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion Yinghao Aaron Li, Ali Zare, Nima Mesgarani We pres

Aaron (Yinghao) Li 282 Jan 01, 2023
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022