FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

Related tags

Deep Learningfamie
Overview

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE). FAMIE is designed to address a fundamental problem in existing AL frameworks where annotators need to wait for a long time between annotation batches due to the time-consuming nature of model training and data selection at each AL iteration. With a novel proxy AL mechanism and the integration of our SOTA multilingual toolkit Trankit, FAMIE can quickly provide users with a labeled dataset and a ready-to-use model for different IE tasks over 100 languages.

FAMIE's documentation page: https://famie.readthedocs.io

FAMIE's demo website: http://nlp.uoregon.edu:9000/

Installation

FAMIE can be easily installed via one of the following methods:

Using pip

pip install famie

The command would install FAMIE and all dependent packages automatically.

From source

git clone https://github.com/nlp-uoregon/famie.git
cd famie
pip install -e .

This would first clone our github repo and install FAMIE.

Usage

FAMIE currently supports Named Entity Recognition and Event Detection for over 100 languages. Using FAMIE includes three following steps:

  • Start an annotation session.
  • Annotate data for a target task.
  • Access the labeled data and a ready-to-use model returned by FAMIE.

Starting an annotation session

To start an annotation session, please use the following command:

famie start

This will run a server on users' local machines (no data or models will leave users' local machines), users can access FAMIE's web interface via the URL: http://127.0.0.1:9000/ . As FAMIE is an AL framework, it provides different data selection algorithms that recommend users the most beneficial examples to label at each annotation iteration. This is done via passing an optional argument --selection [mnlp|badge|bertkm|random].

Annotating data

Accessing the labeled data and the trained model

import famie

# access a project via its name
p = famie.get_project('named-entity-recognition') 

# access the project's labeled data
data = p.get_labeled_data() # a Python dictionary

# export the project's labeled data to a file
p.export_labeled_data('data.json')

# export the project's trained model to a file
p.export_trained_model('model.ckpt')

# access the project's trained model
model = p.get_trained_model()

# access a trained model from file
model = famie.load_model_from_file('model.ckpt')

# use the trained model to make predicions
model.predict('Oregon is a beautiful state!')
# ['B-Location', 'O', 'O', 'O', 'O']
Owner
This is the official github account for the Natural Language Processing Group at the University of Oregon.
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

Yao Feng 2.3k Dec 30, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
wlad 2 Dec 19, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022