Efficient face emotion recognition in photos and videos

Overview

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficient audiovisual analysis of dynamical changes in emotional state based on information-theoretic approach).

Our approach is described in the arXiv paper published at IEEE SISY 2021. The extended version of this paper is under considereation in the international journal.

All the models were pre-trained for face identification task using VGGFace2 dataset. In order to train PyTorch models, SAM code was borrowed.

We upload several models that obtained the state-of-the-art results for AffectNet dataset. The facial features extracted by these models lead to the state-of-the-art accuracy of face-only models on video datasets from EmotiW 2019, 2020 challenges: AFEW (Acted Facial Expression In The Wild), VGAF (Video level Group AFfect) and EngageWild.

Here are the accuracies measure on the testing set of above-mentioned datasets:

Model AffectNet (8 classes), original AffectNet (8 classes), aligned AffectNet (7 classes), original AffectNet (7 classes), aligned AFEW VGAF
mobilenet_7.h5 - - 64.71 - 55.35 68.92
enet_b0_8_best_afew.pt 60.95 60.18 64.63 64.54 59.89 66.80
enet_b0_8_best_vgaf.pt 61.32 61.03 64.57 64.89 55.14 68.29
enet_b0_7.pt - - 65.74 65.74 56.99 65.18
enet_b2_8.pt 63.025 62.40 66.29 - 57.78 70.23
enet_b2_7.pt - - 65.91 66.34 59.63 69.84

Please note, that we report the accuracies for AFEW and VGAFonly on the subsets, in which MTCNN detects facial regions. The code contains also computation of overall accuracy on the complete testing set, which is slightly lower due to the absence of faces or failed face detection.

In order to run our code on the datasets, please prepare them firstly using our TensorFlow notebooks: train_emotions.ipynb, AFEW_train.ipynb and VGAF_train.ipynb.

If you want to run our mobile application, please, run the following scripts inside mobile_app folder:

python to_tflite.py
python to_pytorchlite.py

Please be sure that EfficientNet models for PyTorch are based on old timm 0.4.5 package, so that exactly tis version should be installed by the following command:

pip install timm==0.4.5
Comments
  • can you share your Manually_Annotated_file cvs files?

    can you share your Manually_Annotated_file cvs files?

    I test affectnet validation data, but get 0.5965 using enet_b2_8.pt. can you share Manually_Annotated_file validation.csv and training.csv to me for debug?

    opened by Dian-Yi 10
  • affectnet march2021 version training script update

    affectnet march2021 version training script update

    As mentioned in #14 , we have different version of affectnet versions. I updated pytorch training script for AffectNet march2021. Two notes are

    • I used horizontal flip for training augmentation,
    • and we have different emotion order in logit.
    opened by sunggukcha 6
  • Confidence range for inference using python library

    Confidence range for inference using python library

    Hi,

    First of all, thank you so much for such a convenient setup to use!

    I'm using the python library face emotion in my code with the model_name = 'enet_b0_8_best_afew'. I was wondering what is the range of the confidence returned by the library or this model in particular. I wasn't able to figure that out.

    Thank you

    opened by varunsingh3000 4
  • Preprocessing of images to run inference

    Preprocessing of images to run inference

    Hello, thank you very much for your work.

    I am trying to preprocess a batch of images (I have my own dataset) the way you prepared your data. I'm following the notebook train_emotions.ipynb as it is in Tensforflow and I'm using that framework.

    I have a question about the steps of the preprocessing, so I would like to ask you if you can tell me the correct steps. These are the steps I'm following, let me know if I'm right or if something is missing:

    1. I already have my images with the faces detected and croppped, i.e, I have a dataset full of faces like this frame9

    2. img = cv2.imread(img_path)

    3. img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    4. img = cv2.resize(img,(224,224))

    5. Then your notebook shows you make a normalization def mobilenet_preprocess_input(x,**kwargs): x[..., 0] -= 103.939 x[..., 1] -= 116.779 x[..., 2] -= 123.68 return x preprocessing_function=mobilenet_preprocess_input

    Here I am having an issue because I cannot cast the subtraction operation between an integer and a float, so I changed it to

    def mobilenet_preprocess_input(x,**kwargs): x[..., 0] = x[..., 0] - 103.939 x[..., 1] = x[..., 1] - 116.779 x[..., 2] = x[..., 2] - 123.68 return x preprocessing_function=mobilenet_preprocess_input

    So, let me know if the process I'm following is correct or if there's something missing.

    Thank you!

    opened by isa-tr 4
  • AttributeError: 'SqueezeExcite' object has no attribute 'gate'

    AttributeError: 'SqueezeExcite' object has no attribute 'gate'

    Excuse me, this problem occurs when using the ‘enet_b2_7.pt’ model to test. I completed it according to the steps you gave, but I really couldn't find the reason for this problem. Do you have any suggestions?

    opened by evercy 4
  • Age gender ethinicity model giving same output for different results

    Age gender ethinicity model giving same output for different results

    `class CNN(object):

    def __init__(self, model_filepath):
    
        self.model_filepath = model_filepath
        self.load_graph(model_filepath = self.model_filepath)
    
    def load_graph(self, model_filepath):
        print('Loading model...')
        self.graph = tf.Graph()
        self.sess = tf.compat.v1.InteractiveSession(graph = self.graph)
    
        with tf.compat.v1.gfile.GFile(model_filepath, 'rb') as f:
            graph_def = tf.compat.v1.GraphDef()
            graph_def.ParseFromString(f.read())
    
        print('Check out the input placeholders:')
        nodes = [n.name + ' => ' +  n.op for n in graph_def.node if n.op in ('Placeholder')]
        for node in nodes:
            print(node)
    
        # Define input tensor
        self.input = tf.compat.v1.placeholder(np.float32, shape = [None, 224, 224, 3], name='input')
        # self.dropout_rate = tf.placeholder(tf.float32, shape = [], name = 'dropout_rate')
    
        tf.import_graph_def(graph_def, {'input_1': self.input})
    
        print('Model loading complete!')
    
        
        # Get layer names
        layers = [op.name for op in self.graph.get_operations()]
        for layer in layers:
            print(layer)
    
    def test(self, data):
    
        # Know your output node name
        output_tensor1,output_tensor2 ,output_tensor3  = self.graph.get_tensor_by_name('import/age_pred/Softmax: 0'),self.graph.get_tensor_by_name('import/gender_pred/Sigmoid: 0'),self.graph.get_tensor_by_name('import/ethnicity_pred/Softmax: 0')
        output = self.sess.run([output_tensor1,output_tensor2 ,output_tensor3], feed_dict = {self.input: data})
    
        return output`
    

    Using this code load "age_gender_ethnicity_224_deep-03-0.13-0.97-0.88.pb" and predict on it. But when predicting on images, every time I am getting same output array.

    [array([[0.01319346, 0.00229602, 0.00176407, 0.00270929, 0.01408699, 0.00574261, 0.00756087, 0.01012164, 0.01221055, 0.01821703, 0.01120028, 0.00936489, 0.01003029, 0.00912451, 0.00813381, 0.00894791, 0.01277262, 0.01034999, 0.01053109, 0.0133063 , 0.01423471, 0.01610439, 0.01528896, 0.01825454, 0.01722076, 0.01933933, 0.01908059, 0.01899827, 0.01919533, 0.0278129 , 0.02204996, 0.02146631, 0.02125309, 0.02146868, 0.02230236, 0.02054285, 0.02096066, 0.01976574, 0.01990371, 0.02064857, 0.01843528, 0.01697922, 0.01610838, 0.01458549, 0.01581902, 0.01377539, 0.01298613, 0.01378927, 0.01191105, 0.01335083, 0.01154454, 0.01118198, 0.01019558, 0.01038121, 0.00920709, 0.00902615, 0.00936321, 0.00969135, 0.00867239, 0.00838663, 0.00797724, 0.00756043, 0.00890809, 0.00758041, 0.00743711, 0.00584346, 0.00555749, 0.00639214, 0.0061864 , 0.00784793, 0.00532241, 0.00567684, 0.00481544, 0.0052173 , 0.00513186, 0.00394571, 0.00415856, 0.00384584, 0.00452774, 0.0041736 , 0.00328163, 0.00327138, 0.00297012, 0.00369216, 0.00284221, 0.00255897, 0.00285459, 0.00232105, 0.00228869, 0.00218005, 0.0021927 , 0.00236659, 0.00233843, 0.00204793, 0.00209861, 0.00231407, 0.00145706, 0.00179674, 0.00186183, 0.00221309]], dtype=float32), array([[0.62949586]], dtype=float32), array([[0.21338916, 0.19771543, 0.19809113, 0.19525865, 0.19554558]], dtype=float32)] Is there something am missing or is this .pb file not meant for predicting?

    opened by sneakatyou 4
  • Provide the validation script/notebook.

    Provide the validation script/notebook.

    Hi,

    I am fond of your works and paper, but I can not find any validation script to validate your result, especially the highest result with efficientNetB2-8 classes-EffectNet.

    Or could you please provide a separate script to pre-process the input images then we can validate the provided weights on your GitHub repository?

    Thank you,

    opened by ltkhang 4
  • A few suggestions.

    A few suggestions.

    Hello!

    I have a couple of ideas:

    1. Could you, please, add text description about difference between models, especially between b0 and b2 general types?
    2. Please consider adding hsemotion-onnx package to the pip repository.
    opened by ioctl-user 3
  • Can not load pretrained models

    Can not load pretrained models

     File "/Users/xxx/Library/Python/3.8/lib/python/site-packages/timm/models/efficientnet_blocks.py", line 47, in forward
        return x * self.gate(x_se)
      File "/Users/xxx/Library/Python/3.8/lib/python/site-packages/torch/nn/modules/module.py", line 947, in __getattr__
        raise AttributeError("'{}' object has no attribute '{}'".format(
    AttributeError: 'SqueezeExcite' object has no attribute 'gate'
    
    opened by DefTruth 3
  • A error when runing codes.

    A error when runing codes.

    When runing AFEW_train.ipynb, an error occured:

    could not broadcast input array from shape (0,112,3) into shape (60,112,3) at facial_anylysis.py line 274 : tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]

    why dose this occured? could you please fixed it?

    opened by kiva12138 3
  • Valence and arousal

    Valence and arousal

    Hello again! I've read your paper and I've seen that you use the circumplex model's variables arousal and valence. How do those variable appears in the code? I can't find them :( Thank you, Amaia

    opened by AmaiaBiomedicalEngineer 2
  • Question about this work.

    Question about this work.

    Dear Andrey Savchenko,

    I'm a student and going to build a small system to detect student's emotions for my thesis. After finding a solution, I found your job. But I can't run https://github.com/HSE-asavchenko/face-emotion-recognition/blob/main/src/affectnet/train_emotions.ipynb by current AFFECT dataset's version. Please correct me if I'm wrong. My question is: Can I run this workhttps://github.com/HSE-asavchenko/face-emotion-recognition/blob/main/src/affectnet/train_affectnet_march2021_pytorch.ipynb with MobileNet. Because I tend to build small applications to detect emotions from client site then send result to server.

    Many thanks,

    Son Nguyen.

    opened by sonnguyen1996 2
Releases(v0.2.1)
Owner
Andrey Savchenko
Andrey Savchenko
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
Implementation of Hourglass Transformer, in Pytorch, from Google and OpenAI

Hourglass Transformer - Pytorch (wip) Implementation of Hourglass Transformer, in Pytorch. It will also contain some of my own ideas about how to make

Phil Wang 61 Dec 25, 2022
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective Official implementation of "FL-WBC: Enhan

Jingwei Sun 26 Nov 28, 2022
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022