Efficient face emotion recognition in photos and videos

Overview

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficient audiovisual analysis of dynamical changes in emotional state based on information-theoretic approach).

Our approach is described in the arXiv paper published at IEEE SISY 2021. The extended version of this paper is under considereation in the international journal.

All the models were pre-trained for face identification task using VGGFace2 dataset. In order to train PyTorch models, SAM code was borrowed.

We upload several models that obtained the state-of-the-art results for AffectNet dataset. The facial features extracted by these models lead to the state-of-the-art accuracy of face-only models on video datasets from EmotiW 2019, 2020 challenges: AFEW (Acted Facial Expression In The Wild), VGAF (Video level Group AFfect) and EngageWild.

Here are the accuracies measure on the testing set of above-mentioned datasets:

Model AffectNet (8 classes), original AffectNet (8 classes), aligned AffectNet (7 classes), original AffectNet (7 classes), aligned AFEW VGAF
mobilenet_7.h5 - - 64.71 - 55.35 68.92
enet_b0_8_best_afew.pt 60.95 60.18 64.63 64.54 59.89 66.80
enet_b0_8_best_vgaf.pt 61.32 61.03 64.57 64.89 55.14 68.29
enet_b0_7.pt - - 65.74 65.74 56.99 65.18
enet_b2_8.pt 63.025 62.40 66.29 - 57.78 70.23
enet_b2_7.pt - - 65.91 66.34 59.63 69.84

Please note, that we report the accuracies for AFEW and VGAFonly on the subsets, in which MTCNN detects facial regions. The code contains also computation of overall accuracy on the complete testing set, which is slightly lower due to the absence of faces or failed face detection.

In order to run our code on the datasets, please prepare them firstly using our TensorFlow notebooks: train_emotions.ipynb, AFEW_train.ipynb and VGAF_train.ipynb.

If you want to run our mobile application, please, run the following scripts inside mobile_app folder:

python to_tflite.py
python to_pytorchlite.py

Please be sure that EfficientNet models for PyTorch are based on old timm 0.4.5 package, so that exactly tis version should be installed by the following command:

pip install timm==0.4.5
Comments
  • can you share your Manually_Annotated_file cvs files?

    can you share your Manually_Annotated_file cvs files?

    I test affectnet validation data, but get 0.5965 using enet_b2_8.pt. can you share Manually_Annotated_file validation.csv and training.csv to me for debug?

    opened by Dian-Yi 10
  • affectnet march2021 version training script update

    affectnet march2021 version training script update

    As mentioned in #14 , we have different version of affectnet versions. I updated pytorch training script for AffectNet march2021. Two notes are

    • I used horizontal flip for training augmentation,
    • and we have different emotion order in logit.
    opened by sunggukcha 6
  • Confidence range for inference using python library

    Confidence range for inference using python library

    Hi,

    First of all, thank you so much for such a convenient setup to use!

    I'm using the python library face emotion in my code with the model_name = 'enet_b0_8_best_afew'. I was wondering what is the range of the confidence returned by the library or this model in particular. I wasn't able to figure that out.

    Thank you

    opened by varunsingh3000 4
  • Preprocessing of images to run inference

    Preprocessing of images to run inference

    Hello, thank you very much for your work.

    I am trying to preprocess a batch of images (I have my own dataset) the way you prepared your data. I'm following the notebook train_emotions.ipynb as it is in Tensforflow and I'm using that framework.

    I have a question about the steps of the preprocessing, so I would like to ask you if you can tell me the correct steps. These are the steps I'm following, let me know if I'm right or if something is missing:

    1. I already have my images with the faces detected and croppped, i.e, I have a dataset full of faces like this frame9

    2. img = cv2.imread(img_path)

    3. img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    4. img = cv2.resize(img,(224,224))

    5. Then your notebook shows you make a normalization def mobilenet_preprocess_input(x,**kwargs): x[..., 0] -= 103.939 x[..., 1] -= 116.779 x[..., 2] -= 123.68 return x preprocessing_function=mobilenet_preprocess_input

    Here I am having an issue because I cannot cast the subtraction operation between an integer and a float, so I changed it to

    def mobilenet_preprocess_input(x,**kwargs): x[..., 0] = x[..., 0] - 103.939 x[..., 1] = x[..., 1] - 116.779 x[..., 2] = x[..., 2] - 123.68 return x preprocessing_function=mobilenet_preprocess_input

    So, let me know if the process I'm following is correct or if there's something missing.

    Thank you!

    opened by isa-tr 4
  • AttributeError: 'SqueezeExcite' object has no attribute 'gate'

    AttributeError: 'SqueezeExcite' object has no attribute 'gate'

    Excuse me, this problem occurs when using the ‘enet_b2_7.pt’ model to test. I completed it according to the steps you gave, but I really couldn't find the reason for this problem. Do you have any suggestions?

    opened by evercy 4
  • Age gender ethinicity model giving same output for different results

    Age gender ethinicity model giving same output for different results

    `class CNN(object):

    def __init__(self, model_filepath):
    
        self.model_filepath = model_filepath
        self.load_graph(model_filepath = self.model_filepath)
    
    def load_graph(self, model_filepath):
        print('Loading model...')
        self.graph = tf.Graph()
        self.sess = tf.compat.v1.InteractiveSession(graph = self.graph)
    
        with tf.compat.v1.gfile.GFile(model_filepath, 'rb') as f:
            graph_def = tf.compat.v1.GraphDef()
            graph_def.ParseFromString(f.read())
    
        print('Check out the input placeholders:')
        nodes = [n.name + ' => ' +  n.op for n in graph_def.node if n.op in ('Placeholder')]
        for node in nodes:
            print(node)
    
        # Define input tensor
        self.input = tf.compat.v1.placeholder(np.float32, shape = [None, 224, 224, 3], name='input')
        # self.dropout_rate = tf.placeholder(tf.float32, shape = [], name = 'dropout_rate')
    
        tf.import_graph_def(graph_def, {'input_1': self.input})
    
        print('Model loading complete!')
    
        
        # Get layer names
        layers = [op.name for op in self.graph.get_operations()]
        for layer in layers:
            print(layer)
    
    def test(self, data):
    
        # Know your output node name
        output_tensor1,output_tensor2 ,output_tensor3  = self.graph.get_tensor_by_name('import/age_pred/Softmax: 0'),self.graph.get_tensor_by_name('import/gender_pred/Sigmoid: 0'),self.graph.get_tensor_by_name('import/ethnicity_pred/Softmax: 0')
        output = self.sess.run([output_tensor1,output_tensor2 ,output_tensor3], feed_dict = {self.input: data})
    
        return output`
    

    Using this code load "age_gender_ethnicity_224_deep-03-0.13-0.97-0.88.pb" and predict on it. But when predicting on images, every time I am getting same output array.

    [array([[0.01319346, 0.00229602, 0.00176407, 0.00270929, 0.01408699, 0.00574261, 0.00756087, 0.01012164, 0.01221055, 0.01821703, 0.01120028, 0.00936489, 0.01003029, 0.00912451, 0.00813381, 0.00894791, 0.01277262, 0.01034999, 0.01053109, 0.0133063 , 0.01423471, 0.01610439, 0.01528896, 0.01825454, 0.01722076, 0.01933933, 0.01908059, 0.01899827, 0.01919533, 0.0278129 , 0.02204996, 0.02146631, 0.02125309, 0.02146868, 0.02230236, 0.02054285, 0.02096066, 0.01976574, 0.01990371, 0.02064857, 0.01843528, 0.01697922, 0.01610838, 0.01458549, 0.01581902, 0.01377539, 0.01298613, 0.01378927, 0.01191105, 0.01335083, 0.01154454, 0.01118198, 0.01019558, 0.01038121, 0.00920709, 0.00902615, 0.00936321, 0.00969135, 0.00867239, 0.00838663, 0.00797724, 0.00756043, 0.00890809, 0.00758041, 0.00743711, 0.00584346, 0.00555749, 0.00639214, 0.0061864 , 0.00784793, 0.00532241, 0.00567684, 0.00481544, 0.0052173 , 0.00513186, 0.00394571, 0.00415856, 0.00384584, 0.00452774, 0.0041736 , 0.00328163, 0.00327138, 0.00297012, 0.00369216, 0.00284221, 0.00255897, 0.00285459, 0.00232105, 0.00228869, 0.00218005, 0.0021927 , 0.00236659, 0.00233843, 0.00204793, 0.00209861, 0.00231407, 0.00145706, 0.00179674, 0.00186183, 0.00221309]], dtype=float32), array([[0.62949586]], dtype=float32), array([[0.21338916, 0.19771543, 0.19809113, 0.19525865, 0.19554558]], dtype=float32)] Is there something am missing or is this .pb file not meant for predicting?

    opened by sneakatyou 4
  • Provide the validation script/notebook.

    Provide the validation script/notebook.

    Hi,

    I am fond of your works and paper, but I can not find any validation script to validate your result, especially the highest result with efficientNetB2-8 classes-EffectNet.

    Or could you please provide a separate script to pre-process the input images then we can validate the provided weights on your GitHub repository?

    Thank you,

    opened by ltkhang 4
  • A few suggestions.

    A few suggestions.

    Hello!

    I have a couple of ideas:

    1. Could you, please, add text description about difference between models, especially between b0 and b2 general types?
    2. Please consider adding hsemotion-onnx package to the pip repository.
    opened by ioctl-user 3
  • Can not load pretrained models

    Can not load pretrained models

     File "/Users/xxx/Library/Python/3.8/lib/python/site-packages/timm/models/efficientnet_blocks.py", line 47, in forward
        return x * self.gate(x_se)
      File "/Users/xxx/Library/Python/3.8/lib/python/site-packages/torch/nn/modules/module.py", line 947, in __getattr__
        raise AttributeError("'{}' object has no attribute '{}'".format(
    AttributeError: 'SqueezeExcite' object has no attribute 'gate'
    
    opened by DefTruth 3
  • A error when runing codes.

    A error when runing codes.

    When runing AFEW_train.ipynb, an error occured:

    could not broadcast input array from shape (0,112,3) into shape (60,112,3) at facial_anylysis.py line 274 : tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]

    why dose this occured? could you please fixed it?

    opened by kiva12138 3
  • Valence and arousal

    Valence and arousal

    Hello again! I've read your paper and I've seen that you use the circumplex model's variables arousal and valence. How do those variable appears in the code? I can't find them :( Thank you, Amaia

    opened by AmaiaBiomedicalEngineer 2
  • Question about this work.

    Question about this work.

    Dear Andrey Savchenko,

    I'm a student and going to build a small system to detect student's emotions for my thesis. After finding a solution, I found your job. But I can't run https://github.com/HSE-asavchenko/face-emotion-recognition/blob/main/src/affectnet/train_emotions.ipynb by current AFFECT dataset's version. Please correct me if I'm wrong. My question is: Can I run this workhttps://github.com/HSE-asavchenko/face-emotion-recognition/blob/main/src/affectnet/train_affectnet_march2021_pytorch.ipynb with MobileNet. Because I tend to build small applications to detect emotions from client site then send result to server.

    Many thanks,

    Son Nguyen.

    opened by sonnguyen1996 2
Releases(v0.2.1)
Owner
Andrey Savchenko
Andrey Savchenko
Implementation of Ag-Grid component for Streamlit

streamlit-aggrid AgGrid is an awsome grid for web frontend. More information in https://www.ag-grid.com/. Consider purchasing a license from Ag-Grid i

Pablo Fonseca 556 Dec 31, 2022
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
GrailQA: Strongly Generalizable Question Answering

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It ca

OSU DKI Lab 76 Dec 21, 2022
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Tube Self-Attention Network (TSA-Net) This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Qu

ShunliWang 18 Dec 23, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
Deep learning library for solving differential equations and more

DeepXDE Voting on whether we should have a Slack channel for discussion. DeepXDE is a library for scientific machine learning. Use DeepXDE if you need

Lu Lu 1.4k Dec 29, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022