Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Overview

Torch-template-for-deep-learning

Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms **.

Requirements

· torch, torch-vision

· torchsummary

· other necessary

usage

A training script is supplied in “train_baseline.py”, the arguments are in “args.py

autoaug: Data enhancement and CNNs regularization

- StochDepth
- label smoothing
- Cutout
- DropBlock
- Mixup
- Manifold Mixup
- ShakeDrop
- cutmix

dataset_loader: Loaders for various datasets

from dataloder.scoliosis_dataloder import ScoliosisDataset
from dataloder.facial_attraction_dataloder import FacialAttractionDataset
from dataloder.fa_and_sco_dataloder import ScoandFaDataset
from dataloder.scofaNshot_dataloder import ScoandFaNshotDataset
from dataloder.age_dataloder import MegaAsiaAgeDataset
def load_dataset(data_config):
    if data_config.dataset == 'cifar10':
        training_transform=training_transforms()
        if data_config.autoaug:
            print('auto Augmentation the data !')
            training_transform.transforms.insert(0, Augmentation(fa_reduced_cifar10()))
        train_dataset = torchvision.datasets.CIFAR10(root=data_config.data_path,
                                                     train=True,
                                                     transform=training_transform,
                                                     download=True)
        val_dataset = torchvision.datasets.CIFAR10(root=data_config.data_path,
                                                   train=False,
                                                   transform=validation_transforms(),
                                                   download=True)
        return train_dataset,val_dataset
    elif data_config.dataset == 'cifar100':
        train_dataset = torchvision.datasets.CIFAR100(root=data_config.data_path,
                                                     train=True,
                                                     transform=training_transforms(),
                                                     download=True)
        val_dataset = torchvision.datasets.CIFAR100(root=data_config.data_path,
                                                   train=False,
                                                   transform=validation_transforms(),
                                                   download=True)
        return train_dataset, val_dataset

deployment: Deployment mode of pytorch model

Two deployment modes of pytorch model are provided, one is web deployment and the other is C + + deployment

Store the training weight file in ` flash_ Deployment ` folder

Then modify ' server.py '  path

Leverage ' client.Py ' call

models: Various classical deep learning models

Classical network
- **AlexNet**
- **VGG**
- **ResNet** 
- **ResNext** 
- **InceptionV1**
- **InceptionV2 and InceptionV3**
- **InceptionV4 and Inception-ResNet**
- **GoogleNet**
- **EfficienNet**
- **MNasNet**
- **DPN**
Attention network
- **SE Attention**
- **External Attention**
- **Self Attention**
- **SK Attention**
- **CBAM Attention**
- **BAM Attention**
- **ECA Attention**
- **DANet Attention**
- **Pyramid Split Attention(PSA)**
- **EMSA Attention**
- **A2Attention**
- **Non-Local Attention**
- **CoAtNet**
- **CoordAttention**
- **HaloAttention**
- **MobileViTAttention**
- **MUSEAttention**  
- **OutlookAttention**
- **ParNetAttention**
- **ParallelPolarizedSelfAttention**
- **residual_attention**
- **S2Attention**
- **SpatialGroupEnhance Attention**
- **ShuffleAttention**
- **GFNet Attention**
- **TripletAttention**
- **UFOAttention**
- **VIPAttention**
Lightweight network
- **MobileNets:**
- **MobileNetV2:**
- **MobileNetV3:**
- **ShuffleNet:**
- **ShuffleNet V2:**
- **SqueezeNet**
- **Xception**
- **MixNet**
- **GhostNet**
GAN
- **Auxiliary Classifier GAN**
- **Adversarial Autoencoder**
- **BEGAN**
- **BicycleGAN**
- **Boundary-Seeking GAN**
- **Cluster GAN**
- **Conditional GAN**
- **Context-Conditional GAN**
- **Context Encoder**
- **Coupled GAN**
- **CycleGAN**
- **Deep Convolutional GAN**
- **DiscoGAN**
- **DRAGAN**
- **DualGAN**
- **Energy-Based GAN**
- **Enhanced Super-Resolution GAN**  
- **Least Squares GAN**
- **Enhanced Super-Resolution GAN**
- **GAN**
- **InfoGAN**
- **Pix2Pix**
- **Relativistic GAN**
- **Semi-Supervised GAN**
- **StarGAN**
- **Wasserstein GAN**
- **Wasserstein GAN GP**
- **Wasserstein GAN DIV**
ObjectDetection-network
- **SSD:**
- **YOLO:**
- **YOLOv2:**
- **YOLOv3:**
- **FCOS:**
- **FPN:**
- **RetinaNet**
- **Objects as Points:**
- **FSAF:**
- **CenterNet**
- **FoveaBox**
Semantic Segmentation
- **FCN**
- **Fast-SCNN**
- **LEDNet:**
- **LRNNet**
- **FisheyeMODNet:**
Instance Segmentation
- **PolarMask** 
FaceDetectorAndRecognition
- **FaceBoxes**
- **LFFD**
- **VarGFaceNet**
HumanPoseEstimation
- **Stacked Hourglass Networks**
- **Simple Baselines**
- **LPN**

pytorch_loss: loss for training

- label-smooth
- amsoftmax
- focal-loss
- dual-focal-loss 
- triplet-loss
- giou-loss
- affinity-loss
- pc_softmax_cross_entropy
- ohem-loss(softmax based on line hard mining loss)
- large-margin-softmax(bmvc2019)
- lovasz-softmax-loss
- dice-loss(both generalized soft dice loss and batch soft dice loss)

tf_to_pytorch: TensorFlow to PyTorch Conversion

This directory is used to convert TensorFlow weights to PyTorch. 
It was hacked together fairly quickly, so the code is not the most 
beautiful (just a warning!), but it does the job. I will be refactoring it soon.

TorchCAM: Class Activation Mapping

Simple way to leverage the class-specific activation of convolutional layers in PyTorch.

- CAM
- ScoreCAM
- SSCAM
- ISCAM
- GradCAM
- Grad-CAM++
- Smooth Grad-CAM++
- XGradCAM
- LayerCAM

Note

Write at the end

At present, the work organized by this project is indeed not comprehensive enough. As the amount of reading increases, we will continue to improve this project. Welcome everyone star to support. If there are incorrect statements or incorrect code implementations in the article, you are welcome to point out~

Owner
Li Shengyan
Li Shengyan
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
EsViT: Efficient self-supervised Vision Transformers

Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect

Microsoft 352 Dec 25, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022