Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Overview

Torch-template-for-deep-learning

Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms **.

Requirements

· torch, torch-vision

· torchsummary

· other necessary

usage

A training script is supplied in “train_baseline.py”, the arguments are in “args.py

autoaug: Data enhancement and CNNs regularization

- StochDepth
- label smoothing
- Cutout
- DropBlock
- Mixup
- Manifold Mixup
- ShakeDrop
- cutmix

dataset_loader: Loaders for various datasets

from dataloder.scoliosis_dataloder import ScoliosisDataset
from dataloder.facial_attraction_dataloder import FacialAttractionDataset
from dataloder.fa_and_sco_dataloder import ScoandFaDataset
from dataloder.scofaNshot_dataloder import ScoandFaNshotDataset
from dataloder.age_dataloder import MegaAsiaAgeDataset
def load_dataset(data_config):
    if data_config.dataset == 'cifar10':
        training_transform=training_transforms()
        if data_config.autoaug:
            print('auto Augmentation the data !')
            training_transform.transforms.insert(0, Augmentation(fa_reduced_cifar10()))
        train_dataset = torchvision.datasets.CIFAR10(root=data_config.data_path,
                                                     train=True,
                                                     transform=training_transform,
                                                     download=True)
        val_dataset = torchvision.datasets.CIFAR10(root=data_config.data_path,
                                                   train=False,
                                                   transform=validation_transforms(),
                                                   download=True)
        return train_dataset,val_dataset
    elif data_config.dataset == 'cifar100':
        train_dataset = torchvision.datasets.CIFAR100(root=data_config.data_path,
                                                     train=True,
                                                     transform=training_transforms(),
                                                     download=True)
        val_dataset = torchvision.datasets.CIFAR100(root=data_config.data_path,
                                                   train=False,
                                                   transform=validation_transforms(),
                                                   download=True)
        return train_dataset, val_dataset

deployment: Deployment mode of pytorch model

Two deployment modes of pytorch model are provided, one is web deployment and the other is C + + deployment

Store the training weight file in ` flash_ Deployment ` folder

Then modify ' server.py '  path

Leverage ' client.Py ' call

models: Various classical deep learning models

Classical network
- **AlexNet**
- **VGG**
- **ResNet** 
- **ResNext** 
- **InceptionV1**
- **InceptionV2 and InceptionV3**
- **InceptionV4 and Inception-ResNet**
- **GoogleNet**
- **EfficienNet**
- **MNasNet**
- **DPN**
Attention network
- **SE Attention**
- **External Attention**
- **Self Attention**
- **SK Attention**
- **CBAM Attention**
- **BAM Attention**
- **ECA Attention**
- **DANet Attention**
- **Pyramid Split Attention(PSA)**
- **EMSA Attention**
- **A2Attention**
- **Non-Local Attention**
- **CoAtNet**
- **CoordAttention**
- **HaloAttention**
- **MobileViTAttention**
- **MUSEAttention**  
- **OutlookAttention**
- **ParNetAttention**
- **ParallelPolarizedSelfAttention**
- **residual_attention**
- **S2Attention**
- **SpatialGroupEnhance Attention**
- **ShuffleAttention**
- **GFNet Attention**
- **TripletAttention**
- **UFOAttention**
- **VIPAttention**
Lightweight network
- **MobileNets:**
- **MobileNetV2:**
- **MobileNetV3:**
- **ShuffleNet:**
- **ShuffleNet V2:**
- **SqueezeNet**
- **Xception**
- **MixNet**
- **GhostNet**
GAN
- **Auxiliary Classifier GAN**
- **Adversarial Autoencoder**
- **BEGAN**
- **BicycleGAN**
- **Boundary-Seeking GAN**
- **Cluster GAN**
- **Conditional GAN**
- **Context-Conditional GAN**
- **Context Encoder**
- **Coupled GAN**
- **CycleGAN**
- **Deep Convolutional GAN**
- **DiscoGAN**
- **DRAGAN**
- **DualGAN**
- **Energy-Based GAN**
- **Enhanced Super-Resolution GAN**  
- **Least Squares GAN**
- **Enhanced Super-Resolution GAN**
- **GAN**
- **InfoGAN**
- **Pix2Pix**
- **Relativistic GAN**
- **Semi-Supervised GAN**
- **StarGAN**
- **Wasserstein GAN**
- **Wasserstein GAN GP**
- **Wasserstein GAN DIV**
ObjectDetection-network
- **SSD:**
- **YOLO:**
- **YOLOv2:**
- **YOLOv3:**
- **FCOS:**
- **FPN:**
- **RetinaNet**
- **Objects as Points:**
- **FSAF:**
- **CenterNet**
- **FoveaBox**
Semantic Segmentation
- **FCN**
- **Fast-SCNN**
- **LEDNet:**
- **LRNNet**
- **FisheyeMODNet:**
Instance Segmentation
- **PolarMask** 
FaceDetectorAndRecognition
- **FaceBoxes**
- **LFFD**
- **VarGFaceNet**
HumanPoseEstimation
- **Stacked Hourglass Networks**
- **Simple Baselines**
- **LPN**

pytorch_loss: loss for training

- label-smooth
- amsoftmax
- focal-loss
- dual-focal-loss 
- triplet-loss
- giou-loss
- affinity-loss
- pc_softmax_cross_entropy
- ohem-loss(softmax based on line hard mining loss)
- large-margin-softmax(bmvc2019)
- lovasz-softmax-loss
- dice-loss(both generalized soft dice loss and batch soft dice loss)

tf_to_pytorch: TensorFlow to PyTorch Conversion

This directory is used to convert TensorFlow weights to PyTorch. 
It was hacked together fairly quickly, so the code is not the most 
beautiful (just a warning!), but it does the job. I will be refactoring it soon.

TorchCAM: Class Activation Mapping

Simple way to leverage the class-specific activation of convolutional layers in PyTorch.

- CAM
- ScoreCAM
- SSCAM
- ISCAM
- GradCAM
- Grad-CAM++
- Smooth Grad-CAM++
- XGradCAM
- LayerCAM

Note

Write at the end

At present, the work organized by this project is indeed not comprehensive enough. As the amount of reading increases, we will continue to improve this project. Welcome everyone star to support. If there are incorrect statements or incorrect code implementations in the article, you are welcome to point out~

Owner
Li Shengyan
Li Shengyan
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

CoCLR: Self-supervised Co-Training for Video Representation Learning This repository contains the implementation of: InfoNCE (MoCo on videos) UberNCE

Tengda Han 271 Jan 02, 2023
Code for our CVPR 2022 Paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection"

GEN-VLKT Code for our CVPR 2022 paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection". Contributed by Yue Lia

Yue Liao 47 Dec 04, 2022
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)

HCSC: Hierarchical Contrastive Selective Coding This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive

YUANFAN GUO 111 Dec 20, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 03, 2023
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023