Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Overview

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments

This work presents an approach to explainable navigation under uncertainty.

This is the code release associated with the NeurIPS 2021 paper Generating High-Quality Explanations for Navigation in Partially-Revealed Environments. In this repository, we provide all the code, data, and simulation environments necessary to reproduce our results. These results include (1) training, (2) large-scale evaluation, (3) explaining robot behavior, and (4) interveneing-via-explaining. Here we show an example of an explanation automatically generated by our approach in one of our simulated environments, in which the green path on the ground indicates a likely route to the goal:

An example explanation automatically generated by our approach in our simulated 'Guided Maze' environment.

@inproceedings{stein2021xailsp,
  title = {Generating High-Quality Explanations for Navigation in Partially-Revealed Environments},
  author = {Gregory J. Stein},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year = 2021,
  keywords = {explainability; planning under uncertainty; subgoal-based planning; interpretable-by-design},
}

Getting Started

We use Docker (with the Nvidia runtime) and GNU Make to run our code, so both are required to run our code. First, docker must be installed by following the official docker install guide (the official docker install guide). Second, our docker environments will require that the NVIDIA docker runtime is installed (via nvidia-container-toolkit. Follow the install instructions on the nvidia-docker GitHub page to get it.

Generating Explanations

We have provided a make target that generates two explanations that correspond to those included in the paper. Running the following make targets in a command prompt will generate these:

# Build the repo
make build
# Generate explanation plots
make xai-explanations

For each, the planner is run for a set number of steps and an explanation is generated by the agent and its learned model to justify its behavior compared to what the oracle planner specifies as the action known to lead to the unseen goal. A plot will be generated for each of the explanations and added to ./data/explanations.

Re-Running Results Experiments

We also provide targets for re-running the results for each of our simulated experimental setups:

# Build the repo
make build

# Ensure data timestamps are in the correct order
# Only necessary on the first pass
make fix-target-timestamps

# Maze Environments
make xai-maze EXPERIMENT_NAME=base_allSG
make xai-maze EXPERIMENT_NAME=base_4SG SP_LIMIT_NUM=4
make xai-maze EXPERIMENT_NAME=base_0SG SP_LIMIT_NUM=0

# University Building (floorplan) Environments
make xai-floorplan EXPERIMENT_NAME=base_allSG
make xai-floorplan EXPERIMENT_NAME=base_4SG SP_LIMIT_NUM=4
make xai-floorplan EXPERIMENT_NAME=base_0SG SP_LIMIT_NUM=0

# Results Plotting
make xai-process-results

(This can also be done by running ./run.sh)

This code will build the docker container, do nothing (since the results already exist), and then print out the results. GNU Make is clever: it recognizes that the plots already exist in their respective locations for each of the experiments and, as such, it does not run any code. To save on space to meet the 100MB size requirements, the results images for each experiment have been downsampled to thumbnail size. If you would like to reproduce any of our results, delete the plots of interest in the results folder and rerun the above code; make will detect which plots have been deleted and reproduce them. All results plots can be found in their respective folder in ./data/results.

The make commands above can be augmented to run the trials in parallel, by adding -jN (where N is the number of trials to be run in parallel) to each of the Make commands. On our NVIDIA 2060 SUPER, we are limited by GPU RAM, and so we limit to N=4. Running with higher N is possible but sometimes our simulator tries to allocate memory that does not exist and will crash, requiring that the trial be rerun. It is in principle possible to also generate data and train the learned planners from scratch, though (for now) this part of the pipeline has not been as extensively tested; data generation consumes roughly 1.5TB of disk space, so be sure to have that space available if you wish to run that part of the pipeline. Even with 4 parallel trials, we estimate that running all the above code from scratch (including data generation, training, and evaluation) will take roughly 2 weeks, half of which is evaluation.

Code Organization

The src folder contains a number of python packages necessary for this paper. Most of the algorithmic code that reflects our primary research contributions is predominantly spread across three files:

  • xai.planners.subgoal_planner The SubgoalPlanner class is the one which encapsulates much of the logic for deciding where the robot should go including its calculation of which action it should take and what is the "next best" action. This class is the primary means by which the agent collects information and dispatches it elsewhere to make decisions.
  • xai.learning.models.exp_nav_vis_lsp The ExpVisNavLSP defines the neural network along with its loss terms used to train it. Also critical are the functions included in this and the xai.utils.data file for "updating" the policies to reflect the newly estimated subgoal properties even after the network has been retrained. This class also includes the functionality for computing the delta subgoal properties that primarily define our counterfactual explanations. Virtuall all of this functionality heavily leverages PyTorch, which makes it easy to compute the gradients of the expected cost for each of the policies.
  • xai.planners.explanation This file defines the Explanation class that stores the subgoal properties and their deltas (computed via ExpVisNavLSP) and composes these into a natural language explanation and a helpful visualization showing all the information necessary to understand the agent's decision-making process.
Owner
RAIL Group @ George Mason University
Code for the Robotic Anticipatory Intelligence & Learning (RAIL) Group at George Mason University
RAIL Group @ George Mason University
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
Let's create a tool to convert Thailand budget from PDF to CSV.

thailand-budget-pdf2csv Let's create a tool to convert Thailand Government Budgeting from PDF to CSV! รวมพลัง Dev แปลงงบ จาก PDF สู่ Machine-readable

Kao.Geek 88 Dec 19, 2022
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.

YerevaNN 75 Nov 06, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
Emotion Recognition from Facial Images

Reconhecimento de Emoções a partir de imagens faciais Este projeto implementa um classificador simples que utiliza técncias de deep learning e transfe

Gabriel 2 Feb 09, 2022
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph".

multilingual-mrc-isdg Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph". This r

Liyan 5 Dec 07, 2022
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022