OpenAI's CLIP โ REST API
This is a container wrapping OpenAI's CLIP model in a RESTful interface.
Running the container locally
First, build the container:
docker build -t clip-container:latest .
Then, you can run it:
docker run -it -p 8080:8080 --name "clip-container" --rm clip-container:latest /opt/ml/code/serve
Sending requests:
The container exposes two different endpoints:
GET /ping
: Returns 200 status if the container is working properly.POST /invocations
: Processes a list of images and returns the list of labels with their corresponding probabilities.
Here is an example request assuming the container is listening in port 8080
:
curl --location --request POST 'http://localhost:8080/invocations' \
--header 'Content-Type: application/json' \
--data-raw '{
"images": [
"https://images.unsplash.com/photo-1597308680537-1ba44407ffc0?ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw%3D&ixlib=rb-1.2.1&auto=format&fit=crop&w=1834&q=80",
"https://images.unsplash.com/photo-1589270216117-7972b3082c7d?ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw%3D&ixlib=rb-1.2.1&auto=format&fit=crop&w=1834&q=80"],
"classes": ["person", "bag", "person with a bag", "woman riding a horse", "woman with a bag", "woman with black shirt and a bag"]
}'
The response looks like this:
[
{
"url": "https://images.unsplash.com/photo-1597308680537-1ba44407ffc0?ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw%3D&ixlib=rb-1.2.1&auto=format&fit=crop&w=1834&q=80",
"labels": [
"woman with black shirt and a bag",
"woman with a bag",
"person with a bag",
"bag", "person"
],
"probs": [1.0, 1.7488513970320696e-09, 1.1663764917350243e-19, 4.179975909038141e-30, 3.77612043676229e-30]
},
{
"url": "https://images.unsplash.com/photo-1589270216117-7972b3082c7d?ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw%3D&ixlib=rb-1.2.1&auto=format&fit=crop&w=1834&q=80",
"labels": [
"person with a bag",
"woman with black shirt and a bag",
"bag",
"woman with a bag",
"person"
],
"probs": [1.0, 2.4879632576357835e-08, 2.065714813830402e-13, 7.658033346455602e-15, 1.1307645811408335e-23]
}
]
SageMaker Integration
This container is compatible with SageMaker so you should be able to host it as a SageMaker endpoint with no modifications. The code supports GPU and CPU instances.