A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

Overview

wsss-analysis

The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Introduction

We conduct the first comprehensive analysis of Weakly-Supervised Semantic Segmentation (WSSS) with image label supervision in different image domains. WSSS has been almost exclusively evaluated on PASCAL VOC2012 but little work has been done on applying to different image domains, such as histopathology and satellite images. The paper analyzes the compatibility of different methods for representative datasets and presents principles for applying to an unseen dataset.

In this repository, we provide the evaluation code used to generate the weak localization cues and final segmentations from Section 5 (Performance Evaluation) of the paper. The code release enables reproducing the results in our paper. The Keras implementation of HistoSegNet was adapted from hsn_v1; the Tensorflow implementations of SEC and DSRG were adapted from SEC-tensorflow and DSRG-tensorflow, respectively. The PyTorch implementation of IRNet was adapted from irn. Pretrained models and evaluation images are also available for download.

Citing this repository

If you find this code useful in your research, please consider citing us:

    @article{chan2019comprehensive,
        title={A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains},
        author={Chan, Lyndon and Hosseini, Mahdi S. and Plataniotis, Konstantinos N.},
        journal={International Journal of Computer Vision},
        volume={},
        number={},
        pages={},
        year={2020},
        publisher={Springer}
    }

Getting Started

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes.

Prerequisites

Mandatory

  • python (checked on 3.5)
  • scipy (checked on 1.2.0)
  • skimage / scikit-image (checked on 0.15.0)
  • keras (checked on 2.2.4)
  • tensorflow (checked on 1.13.1)
  • tensorflow-gpu (checked on 1.13.1)
  • numpy (checked on 1.18.1)
  • pandas (checked on 0.23.4)
  • cv2 / opencv-python (checked on 3.4.4.19)
  • cython
  • imageio (checked on 2.5.0)
  • chainercv (checked on 0.12.0)
  • pydensecrf (git+https://github.com/lucasb-eyer/pydensecrf.git)
  • torch (checked on 1.1.0)
  • torchvision (checked on 0.2.2.post3)
  • tqdm

Optional

  • matplotlib (checked on 3.0.2)
  • jupyter

To utilize the code efficiently, GPU support is required. The following configurations have been tested to work successfully:

  • CUDA Version: 10
  • CUDA Driver Version: r440
  • CUDNN Version: 7.6.4 - 7.6.5 We do not guarantee proper functioning of the code using different versions of CUDA or CUDNN.

Hardware Requirements

Each method used in this repository has different GPU memory requirements. We have listed the approximate GPU memory requirements for each model through our own experiments:

  • 01_train: ~6 GB (e.g. NVIDIA RTX 2060)
  • 02_cues: ~6 GB (e.g. NVIDIA RTX 2060)
  • 03a_sec-dsrg: ~11 GB (e.g. NVIDIA GTX 2080 Ti)
  • 03b_irn: ~8 GB (e.g. NVIDIA GTX 1070)
  • 03c_hsn: ~6 GB (e.g. NVIDIA RTX 2060)

Downloading data

The pretrained models, ground-truth annotations, and images used in this paper are available on Zenodo under a Creative Commons Attribution license: DOI. Please extract the contents into your wsss-analysis\database directory. If you choose to extract the data to another directory, please modify the filepaths accordingly in settings.ini.

Note: the training-set images of ADP are released on a case-by-case basis due to the confidentiality agreement for releasing the data. To obtain access to wsss-analysis\database\ADPdevkit\ADPRelease1\JPEGImages and wsss-analysis\database\ADPdevkit\ADPRelease1\PNGImages needed for gen_cues in 01_weak_cues, apply for access separately here.

Running the code

Scripts

To run 02_cues (generate weak cues for SEC and DSRG):

cd 02_cues
python demo.py

To run 03a_sec-dsrg (train/evaluate SEC, DSRG performance in Section 5; to omit training, comment out lines 76-77 in 03a_sec-dsrg\demo.py):

cd 03a_sec-dsrg
python demo.py

To run 03b_irn (train/evaluate IRNet and Grad-CAM performance in Section 5):

cd 03b_irn
python demo_tune.py

To run 03b_irn (evaluate pre-trained Grad-CAM performance in Section 5):

cd 03b_irn
python demo_cam.py

To run 03b_irn (evaluate pre-trained IRNet performance in Section 5):

cd 03b_irn
python demo_sem_seg.py

To run 03c_hsn (evaluate HistoSegNet performance in Section 5):

cd 03c_hsn
python demo.py

Notebooks

03a_sec-dsrg:

03b_irn:

  • VGG16-IRNet on ADP-morph: (TODO)
  • VGG16-IRNet on ADP-func: (TODO)
  • VGG16-IRNet on VOC2012: (TODO)
  • VGG16-IRNet on DeepGlobe: (TODO)

03c_hsn:

Results

To access each method's evaluation results, check the associated eval (for numerical results) and out (for outputted images) folders. For easy access to all evaluated results, run scripts/extract_eval.py.

(NOTE: the numerical results obtained for SEC and DSRG DeepGlobe_balanced differ slightly from those reported in the paper due to retraining the models during code cleanup. Also, tuning is equivalent to the validation set and segtest is equivalent to the evaluation set in ADP. See hsn_v1 to replicate those results for ADP precisely.)

Network - - VGG16 - - - - X1.7/M7 - - - -
WSSS Method - - Grad-CAM SEC DSRG IRNet HistoSegNet Grad-CAM SEC DSRG IRNet HistoSegNet
Dataset Training Testing " " " " " " " " " "
ADP-morph train validation 0.14507 0.10730 0.08826 0.15068 0.13255 0.20997 0.13597 0.13458 0.21450 0.27546
ADP-morph train evaluation 0.14946 0.11409 0.08011 0.15546 0.16159 0.21426 0.13369 0.10835 0.21737 0.26156
ADP-func train validation 0.34813 0.28232 0.37193 0.35016 0.44215 0.35233 0.32216 0.28625 0.34730 0.50663
ADP-func train evaluation 0.38187 0.28097 0.44726 0.36318 0.44115 0.37910 0.30828 0.31734 0.38943 0.48020
VOC2012 train val 0.26262 0.37058 0.32129 0.31198 0.22707 0.14946 0.37629 0.35004 0.17844 0.09201
DeepGlobe training (75% test) evaluation (25% test) 0.28037 0.24005 0.28841 0.29405 0.24019 0.21260 0.24841 0.35258 0.24620 0.29398
DeepGlobe training (37.5% test) evaluation (25% test) 0.28083 0.25512 0.32017 0.29207 0.30410 0.22266 0.20050 0.26470 0.21303 0.21617

Examples

ADP-morph

ADP-func

VOC2012

DeepGlobe

TODO

  1. Improve comments and code documentation
  2. Add IRNet notebooks
  3. Clean up IRNet code
You might also like...
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

Siamese-nn-semantic-text-similarity - A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task Synthetic Humans for Action Recognition, IJCV 2021
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

The implementation for the SportsCap (IJCV 2021)
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Comments
  • Incorrect Axis?

    Incorrect Axis?

    I think the axis=2 is wrong in this line. The docstring says the shape should be BxHxWxC, which would make axis=2 take the argmax over the width dimension, but I think you mean to take it over the class dimension. But seeing as how your code worked using axis=2 I assume it is not a mistake in the code but rather the docstring is incorrect. I guess the inputs to the function are using HxWxC dimensions.

    opened by hasoweh 1
  • Background class DeepGlobe

    Background class DeepGlobe

    Hi, I have a quick question. Are you using a background class in your 'cues' for the DeepGlobe dataset? If so, is this class representing areas in the CAM that are below the FG threshold (20%)?

    Thanks!

    opened by hasoweh 0
Releases(v2.0)
  • v2.0(Jun 21, 2020)

    Code repository corresponding to the second version of the arXiv pre-print: [v2] Tue, 12 May 2020 04:42:47 UTC (6,209 KB). Please note that four methods are evaluated in this version (SEC, DSRG, IRNet, HistoSegNet) with Grad-CAM providing the baseline. Performance is inferior to that reported in the first version of the pre-print.

    Source code(tar.gz)
    Source code(zip)
  • v1.1(Jun 21, 2020)

    Code repository corresponding to the first version of the arXiv pre-print: [v1] Tue, 24 Dec 2019 03:00:34 UTC (8,560 KB). Please note that three methods are evaluated in this version (SEC, DSRG, and HistoSegNet) with the baseline being the thresholded weak cues from Grad-CAM. Performance is inferior to that reported in subsequent versions of the pre-print.

    Source code(tar.gz)
    Source code(zip)
Owner
Lyndon Chan
Computer Vision, Natural Language Processing, Machine Learning | Data Scientist at Alphabyte Solutions (ECE MASc'20, University of Toronto)
Lyndon Chan
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022
Real-world Anomaly Detection in Surveillance Videos- pytorch Re-implementation

Real world Anomaly Detection in Surveillance Videos : Pytorch RE-Implementation This repository is a re-implementation of "Real-world Anomaly Detectio

seominseok 62 Dec 08, 2022
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022