Siamese-nn-semantic-text-similarity - A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task

Overview

Siamese Deep Neural Networks for Semantic Text Similarity PyTorch

A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task, including architectures such as:

  • Siamese LSTM
  • Siamese BiLSTM with Attention
  • Siamese Transformer
  • Siamese BERT.

1_jyPZCDVLuvW4X_K-jXEJ3g

Usage

  • install dependencies
pip install -r requirements.txt
  • download spacy en model for tokenization
python -m spacy download en

Siamese LSTM

Siamese LSTM Example

 ## init siamese lstm
    siamese_lstm = SiameseLSTM(
        batch_size=batch_size,
        output_size=output_size,
        hidden_size=hidden_size,
        vocab_size=vocab_size,
        embedding_size=embedding_size,
        embedding_weights=embedding_weights,
        lstm_layers=lstm_layers,
        device=device,
    )

    ## define optimizer
    optimizer = torch.optim.Adam(params=siamese_lstm.parameters())
   
   ## train model
    train_model(
        model=siamese_lstm,
        optimizer=optimizer,
        dataloader=sick_dataloaders,
        data=sick_data,
        max_epochs=max_epochs,
        config_dict={"device": device, "model_name": "siamese_lstm"},
    )

Siamese BiLSTM with Attention

Siamese BiLSTM with Attention Example

     ## init siamese lstm
     siamese_lstm_attention = SiameseBiLSTMAttention(
        batch_size=batch_size,
        output_size=output_size,
        hidden_size=hidden_size,
        vocab_size=vocab_size,
        embedding_size=embedding_size,
        embedding_weights=embedding_weights,
        lstm_layers=lstm_layers,
        self_attention_config=self_attention_config,
        fc_hidden_size=fc_hidden_size,
        device=device,
        bidirectional=bidirectional,
    )
    
    ## define optimizer
    optimizer = torch.optim.Adam(params=siamese_lstm_attention.parameters())
   
   ## train model
    train_model(
        model=siamese_lstm_attention,
        optimizer=optimizer,
        dataloader=sick_dataloaders,
        data=sick_data,
        max_epochs=max_epochs,
        config_dict={
            "device": device,
            "model_name": "siamese_lstm_attention",
            "self_attention_config": self_attention_config,
        },
    )

Siamese Transformer

Siamese Transformer Example

    ## init siamese bilstm with attention
    siamese_transformer = SiameseTransformer(
        batch_size=batch_size,
        vocab_size=vocab_size,
        embedding_size=embedding_size,
        nhead=attention_heads,
        hidden_size=hidden_size,
        transformer_layers=transformer_layers,
        embedding_weights=embedding_weights,
        device=device,
        dropout=dropout,
        max_sequence_len=max_sequence_len,
    )

    ## define optimizer
    optimizer = torch.optim.Adam(params=siamese_transformer.parameters())
   
   ## train model
    train_model(
        model=siamese_transformer,
        optimizer=optimizer,
        dataloader=sick_dataloaders,
        data=sick_data,
        max_epochs=max_epochs,
        config_dict={"device": device, "model_name": "siamese_transformer"},
    )

Siamese BERT

Siamese BERT Example

    from siamese_sts.siamese_net.siamese_bert import BertForSequenceClassification
    ## init siamese bert
    siamese_bert = BertForSequenceClassification.from_pretrained(model_name)

    ## train model
    trainer = transformers.Trainer(
        model=siamese_bert,
        args=transformers.TrainingArguments(
            output_dir="./output",
            overwrite_output_dir=True,
            learning_rate=1e-5,
            do_train=True,
            num_train_epochs=num_epochs,
            # Adjust batch size if this doesn't fit on the Colab GPU
            per_device_train_batch_size=batch_size,
            save_steps=3000,
        ),
        train_dataset=sick_dataloader,
    )
    trainer.train()
Owner
Shahrukh Khan
CS Grad Student @ Saarland University
Shahrukh Khan
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Image De-raining Using a Conditional Generative Adversarial Network

Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this

He Zhang 216 Dec 18, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023