Siamese-nn-semantic-text-similarity - A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task

Overview

Siamese Deep Neural Networks for Semantic Text Similarity PyTorch

A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task, including architectures such as:

  • Siamese LSTM
  • Siamese BiLSTM with Attention
  • Siamese Transformer
  • Siamese BERT.

1_jyPZCDVLuvW4X_K-jXEJ3g

Usage

  • install dependencies
pip install -r requirements.txt
  • download spacy en model for tokenization
python -m spacy download en

Siamese LSTM

Siamese LSTM Example

 ## init siamese lstm
    siamese_lstm = SiameseLSTM(
        batch_size=batch_size,
        output_size=output_size,
        hidden_size=hidden_size,
        vocab_size=vocab_size,
        embedding_size=embedding_size,
        embedding_weights=embedding_weights,
        lstm_layers=lstm_layers,
        device=device,
    )

    ## define optimizer
    optimizer = torch.optim.Adam(params=siamese_lstm.parameters())
   
   ## train model
    train_model(
        model=siamese_lstm,
        optimizer=optimizer,
        dataloader=sick_dataloaders,
        data=sick_data,
        max_epochs=max_epochs,
        config_dict={"device": device, "model_name": "siamese_lstm"},
    )

Siamese BiLSTM with Attention

Siamese BiLSTM with Attention Example

     ## init siamese lstm
     siamese_lstm_attention = SiameseBiLSTMAttention(
        batch_size=batch_size,
        output_size=output_size,
        hidden_size=hidden_size,
        vocab_size=vocab_size,
        embedding_size=embedding_size,
        embedding_weights=embedding_weights,
        lstm_layers=lstm_layers,
        self_attention_config=self_attention_config,
        fc_hidden_size=fc_hidden_size,
        device=device,
        bidirectional=bidirectional,
    )
    
    ## define optimizer
    optimizer = torch.optim.Adam(params=siamese_lstm_attention.parameters())
   
   ## train model
    train_model(
        model=siamese_lstm_attention,
        optimizer=optimizer,
        dataloader=sick_dataloaders,
        data=sick_data,
        max_epochs=max_epochs,
        config_dict={
            "device": device,
            "model_name": "siamese_lstm_attention",
            "self_attention_config": self_attention_config,
        },
    )

Siamese Transformer

Siamese Transformer Example

    ## init siamese bilstm with attention
    siamese_transformer = SiameseTransformer(
        batch_size=batch_size,
        vocab_size=vocab_size,
        embedding_size=embedding_size,
        nhead=attention_heads,
        hidden_size=hidden_size,
        transformer_layers=transformer_layers,
        embedding_weights=embedding_weights,
        device=device,
        dropout=dropout,
        max_sequence_len=max_sequence_len,
    )

    ## define optimizer
    optimizer = torch.optim.Adam(params=siamese_transformer.parameters())
   
   ## train model
    train_model(
        model=siamese_transformer,
        optimizer=optimizer,
        dataloader=sick_dataloaders,
        data=sick_data,
        max_epochs=max_epochs,
        config_dict={"device": device, "model_name": "siamese_transformer"},
    )

Siamese BERT

Siamese BERT Example

    from siamese_sts.siamese_net.siamese_bert import BertForSequenceClassification
    ## init siamese bert
    siamese_bert = BertForSequenceClassification.from_pretrained(model_name)

    ## train model
    trainer = transformers.Trainer(
        model=siamese_bert,
        args=transformers.TrainingArguments(
            output_dir="./output",
            overwrite_output_dir=True,
            learning_rate=1e-5,
            do_train=True,
            num_train_epochs=num_epochs,
            # Adjust batch size if this doesn't fit on the Colab GPU
            per_device_train_batch_size=batch_size,
            save_steps=3000,
        ),
        train_dataset=sick_dataloader,
    )
    trainer.train()
Owner
Shahrukh Khan
CS Grad Student @ Saarland University
Shahrukh Khan
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model

Xingang Pan 115 Dec 18, 2022
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

3 Feb 25, 2022
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023