C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

Overview

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion

By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedaldi

This is the official implementation of C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion in PyTorch.

Link to paper | Project page

alt text

Dependencies

This is a Python 3.6 package. Required packages can be installed with e.g. pip and conda:

> conda create -n c3dpo python=3.6
> pip install -r requirements.txt

The complete list of dependencies:

  • pytorch (version==1.1.0)
  • numpy
  • tqdm
  • matplotlib
  • visdom
  • pyyaml
  • tabulate

Demo

demo.py downloads and runs a pre-trained C3DPO model on a sample skeleton from the Human36m dataset and generates a 3D figure with a video of the predicted 3D skeleton:

> python ./demo.py

Note that all the outputs are dumped to a local Visdom server. You can start a Visdom server with:

> python -m visdom.server

Images are also stored to the ./data directory. The video will get exported only if there's a functioning ffmpeg callable from the command line.

Downloading data / models

Whenever needed, all datasets / pre-trained models are automatically downloaded to various folders under the ./data directory. Hence, there's no need to bother with a complicated data setup :). In case you would like to cache all the datasets for your own use, simply run the evaluate.py which downloads all the needed data during its run.

Quick start = pre-trained network evaluation

Pre-trained networks can be evaluated by calling evaluate.py:

> python evaluate.py

Note that we provide pre-trained models that will get auto-downloaded during the run of the script to the ./data/exps/ directory. Furthermore, the datasets will also be automatically downloaded in case they are not stored in ./data/datasets/.

Network training + evaluation

Launch experiment.py with the argument cfg_file set to the yaml file corresponding the relevant dataset., e.g.:

> python ./experiment.py --cfg_file ./cfgs/h36m.yaml

will train a C3DPO model for the Human3.6m dataset.

Note that the code supports visualisation in Visdom. In order to enable Visdom visualisations, first start a visdom server with:

> python -m visdom.server

The experiment will output learning curves as well as visualisations of the intermediate outputs to the visdom server.

Furthermore, the results of the evaluation will be periodically updated after every training epoch in ./data/exps/c3dpo/<dataset_name>/eval_results.json. The metrics reported in the paper correspond to 'EVAL_MPJPE_best' and 'EVAL_stress'.

For the list of all possible yaml config files, please see the ./cfgs/ directory. Each config .yaml file corresponds to a training on a different dataset (matching the name of the .yaml file). Expected quantitative results are the same as for the evaluate.py script.

Reference

If you find our work useful, please cite it using the following bibtex reference.

@inproceedings{novotny2019c3dpo,
  title={C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion},
  author={Novotny, David and Ravi, Nikhila and Graham, Benjamin and Neverova, Natalia and Vedaldi, Andrea},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2019}
}

License

C3DPO is distributed under the MIT license, as found in the LICENSE file.

Expected outputs of evaluate.py

Below are the results of the supplied pre-trained models for all datasets:

dataset               MPJPE      Stress
--------------  -----------  ----------
h36m             95.6338     41.5864
h36m_hourglass  145.021      84.693
pascal3d_hrnet   56.8909     40.1775
pascal3d         36.6413     31.0768
up3d_79kp         0.0672771   0.0406902

Note that the models have better performance than published mainly due to letting the models to train for longer.

Notes for reproducibility

Note that the performance reported above was obtained with PyTorch v1.1. If you notice differences in performance make sure to use PyTorch v1.1.

Owner
Meta Research
Meta Research
LIVECell - A large-scale dataset for label-free live cell segmentation

LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data

Sartorius Corporate Research 112 Jan 07, 2023
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir

10 Dec 08, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
Efficient Deep Learning Systems course

Efficient Deep Learning Systems This repository contains materials for the Efficient Deep Learning Systems course taught at the Faculty of Computer Sc

Max Ryabinin 173 Dec 29, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
An NLP library with Awesome pre-trained Transformer models and easy-to-use interface, supporting wide-range of NLP tasks from research to industrial applications.

简体中文 | English News [2021-10-12] PaddleNLP 2.1版本已发布!新增开箱即用的NLP任务能力、Prompt Tuning应用示例与生成任务的高性能推理! 🎉 更多详细升级信息请查看Release Note。 [2021-08-22]《千言:面向事实一致性的生

6.9k Jan 01, 2023
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022