C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

Overview

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion

By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedaldi

This is the official implementation of C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion in PyTorch.

Link to paper | Project page

alt text

Dependencies

This is a Python 3.6 package. Required packages can be installed with e.g. pip and conda:

> conda create -n c3dpo python=3.6
> pip install -r requirements.txt

The complete list of dependencies:

  • pytorch (version==1.1.0)
  • numpy
  • tqdm
  • matplotlib
  • visdom
  • pyyaml
  • tabulate

Demo

demo.py downloads and runs a pre-trained C3DPO model on a sample skeleton from the Human36m dataset and generates a 3D figure with a video of the predicted 3D skeleton:

> python ./demo.py

Note that all the outputs are dumped to a local Visdom server. You can start a Visdom server with:

> python -m visdom.server

Images are also stored to the ./data directory. The video will get exported only if there's a functioning ffmpeg callable from the command line.

Downloading data / models

Whenever needed, all datasets / pre-trained models are automatically downloaded to various folders under the ./data directory. Hence, there's no need to bother with a complicated data setup :). In case you would like to cache all the datasets for your own use, simply run the evaluate.py which downloads all the needed data during its run.

Quick start = pre-trained network evaluation

Pre-trained networks can be evaluated by calling evaluate.py:

> python evaluate.py

Note that we provide pre-trained models that will get auto-downloaded during the run of the script to the ./data/exps/ directory. Furthermore, the datasets will also be automatically downloaded in case they are not stored in ./data/datasets/.

Network training + evaluation

Launch experiment.py with the argument cfg_file set to the yaml file corresponding the relevant dataset., e.g.:

> python ./experiment.py --cfg_file ./cfgs/h36m.yaml

will train a C3DPO model for the Human3.6m dataset.

Note that the code supports visualisation in Visdom. In order to enable Visdom visualisations, first start a visdom server with:

> python -m visdom.server

The experiment will output learning curves as well as visualisations of the intermediate outputs to the visdom server.

Furthermore, the results of the evaluation will be periodically updated after every training epoch in ./data/exps/c3dpo/<dataset_name>/eval_results.json. The metrics reported in the paper correspond to 'EVAL_MPJPE_best' and 'EVAL_stress'.

For the list of all possible yaml config files, please see the ./cfgs/ directory. Each config .yaml file corresponds to a training on a different dataset (matching the name of the .yaml file). Expected quantitative results are the same as for the evaluate.py script.

Reference

If you find our work useful, please cite it using the following bibtex reference.

@inproceedings{novotny2019c3dpo,
  title={C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion},
  author={Novotny, David and Ravi, Nikhila and Graham, Benjamin and Neverova, Natalia and Vedaldi, Andrea},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2019}
}

License

C3DPO is distributed under the MIT license, as found in the LICENSE file.

Expected outputs of evaluate.py

Below are the results of the supplied pre-trained models for all datasets:

dataset               MPJPE      Stress
--------------  -----------  ----------
h36m             95.6338     41.5864
h36m_hourglass  145.021      84.693
pascal3d_hrnet   56.8909     40.1775
pascal3d         36.6413     31.0768
up3d_79kp         0.0672771   0.0406902

Note that the models have better performance than published mainly due to letting the models to train for longer.

Notes for reproducibility

Note that the performance reported above was obtained with PyTorch v1.1. If you notice differences in performance make sure to use PyTorch v1.1.

Owner
Meta Research
Meta Research
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
Syed Waqas Zamir 906 Dec 30, 2022
Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

OFA Sys 1.4k Jan 08, 2023
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

SynSense 21 Dec 14, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.

Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc

Matt Cooper 704 Nov 26, 2022
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022