Papers about explainability of GNNs

Overview

awesome-graph-explainability-papers

Papers about explainability of GNNs

Most Influential Cogdl

  1. Explainability in graph neural networks: A taxonomic survey. Yuan Hao, Yu Haiyang, Gui Shurui, Ji Shuiwang. ARXIV 2020. paper
  2. Gnnexplainer: Generating explanations for graph neural networks. Ying Rex, Bourgeois Dylan, You Jiaxuan, Zitnik Marinka, Leskovec Jure. NeurIPS 2019. paper code
  3. Explainability methods for graph convolutional neural networks. Pope Phillip E, Kolouri Soheil, Rostami Mohammad, Martin Charles E, Hoffmann Heiko. CVPR 2019.paper
  4. Parameterized Explainer for Graph Neural Network. Luo Dongsheng, Cheng Wei, Xu Dongkuan, Yu Wenchao, Zong Bo, Chen Haifeng, Zhang Xiang. NeurIPS 2020. paper code
  5. Xgnn: Towards model-level explanations of graph neural networks. Yuan Hao, Tang Jiliang, Hu Xia, Ji Shuiwang. KDD 2020. paper.
  6. Evaluating Attribution for Graph Neural Networks. Sanchez-Lengeling Benjamin, Wei Jennifer, Lee Brian, Reif Emily, Wang Peter, Qian Wesley, McCloskey Kevin, Colwell Lucy, Wiltschko Alexander. NeurIPS 2020.paper
  7. PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks. Vu Minh, Thai My T.. NeurIPS 2020.paper
  8. Explanation-based Weakly-supervised Learning of Visual Relations with Graph Networks. Federico Baldassarre and Kevin Smith and Josephine Sullivan and Hossein Azizpour. ECCV 2020.paper
  9. GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media. Lu, Yi-Ju and Li, Cheng-Te. ACL 2020.paper
  10. On Explainability of Graph Neural Networks via Subgraph Explorations. Yuan Hao, Yu Haiyang, Wang Jie, Li Kang, Ji Shuiwang. ICML 2021.paper

Recent SOTA

  1. Quantifying Explainers of Graph Neural Networks in Computational Pathology. Jaume Guillaume, Pati Pushpak, Bozorgtabar Behzad, Foncubierta Antonio, Anniciello Anna Maria, Feroce Florinda, Rau Tilman, Thiran Jean-Philippe, Gabrani Maria, Goksel Orcun. Proceedings of the IEEECVF Conference on Computer Vision and Pattern Recognition CVPR 2021.paper
  2. Counterfactual Supporting Facts Extraction for Explainable Medical Record Based Diagnosis with Graph Network. Wu Haoran, Chen Wei, Xu Shuang, Xu Bo. NAACL 2021. paper
  3. When Comparing to Ground Truth is Wrong: On Evaluating GNN Explanation Methods. Faber Lukas, K. Moghaddam Amin, Wattenhofer Roger. KDD 2021. paper
  4. Counterfactual Graphs for Explainable Classification of Brain Networks. Abrate Carlo, Bonchi Francesco. Proceedings of the th ACM SIGKDD Conference on Knowledge Discovery Data Mining KDD 2021. paper
  5. Explainable Subgraph Reasoning for Forecasting on Temporal Knowledge Graphs. Zhen Han, Peng Chen, Yunpu Ma, Volker Tresp. International Conference on Learning Representations ICLR 2021.paper
  6. Generative Causal Explanations for Graph Neural Networks. Lin Wanyu, Lan Hao, Li Baochun. Proceedings of the th International Conference on Machine Learning ICML 2021.paper
  7. Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity. Henderson Ryan, Clevert Djork-Arné, Montanari Floriane. Proceedings of the th International Conference on Machine Learning ICML 2021.paper
  8. Explainable Automated Graph Representation Learning with Hyperparameter Importance. Wang Xin, Fan Shuyi, Kuang Kun, Zhu Wenwu. Proceedings of the th International Conference on Machine Learning ICML 2021.paper
  9. Higher-order explanations of graph neural networks via relevant walks. Schnake Thomas, Eberle Oliver, Lederer Jonas, Nakajima Shinichi, Schütt Kristof T, Müller Klaus-Robert, Montavon Grégoire. arXiv preprint arXiv:2006.03589 2020. paper
  10. HENIN: Learning Heterogeneous Neural Interaction Networks for Explainable Cyberbullying Detection on Social Media. Chen, Hsin-Yu and Li, Cheng-Te. EMNLP 2020. paper

Year 2022

  1. [AAAI22] ProtGNN: Towards Self-Explaining Graph Neural Networks [paper]

Year 2021

  1. [Arxiv 21] Combining Sub-Symbolic and Symbolic Methods for Explainability [paper]
  2. [PAKDD 21] SCARLET: Explainable Attention based Graph Neural Network for Fake News spreader prediction [paper]
  3. [J. Chem. Inf. Model] Coloring Molecules with Explainable Artificial Intelligence for Preclinical Relevance Assessment [paper]
  4. [BioRxiv 21] APRILE: Exploring the Molecular Mechanisms of Drug Side Effects with Explainable Graph Neural Networks [paper]
  5. [ISM 21] Edge-Level Explanations for Graph Neural Networks by Extending Explainability Methods for Convolutional Neural Networks [paper]
  6. [TPAMI 21] Higher-Order Explanations of Graph Neural Networks via Relevant Walks [paper]
  7. [OpenReview 21] FlowX: Towards Explainable Graph Neural Networks via Message Flows [paper]
  8. [OpenReview 21] Task-Agnostic Graph Neural Explanations [paper]
  9. [OpenReview 21] Deconfounding to Explanation Evaluation in Graph Neural Networks [paper]
  10. [OpenReview 21] DEGREE: Decomposition Based Explanation for Graph Neural Networks [paper]
  11. [OpenReview 21] Discovering Invariant Rationales for Graph Neural Networks [paper]
  12. [OpenReview 21] Interpreting Graph Neural Networks via Unrevealed Causal Learning [paper]
  13. [OpenReview 21] Explainable GNN-Based Models over Knowledge Graphs [paper]
  14. [NeurIPS 2021] Reinforcement Learning Enhanced Explainer for Graph Neural Networks [paper]
  15. [NeurIPS 2021] Towards Multi-Grained Explainability for Graph Neural Networks [paper]
  16. [NeurIPS 2021] Robust Counterfactual Explanations on Graph Neural Networks [paper]
  17. [CVPR 2021] Quantifying Explainers of Graph Neural Networks in Computational Pathology.[paper]
  18. [NAACL 2021] Counterfactual Supporting Facts Extraction for Explainable Medical Record Based Diagnosis with Graph Network. [paper]
  19. [Arxiv 21] A Meta-Learning Approach for Training Explainable Graph Neural Network [paper]
  20. [Arxiv 21] Jointly Attacking Graph Neural Network and its Explanations [paper]
  21. [Arxiv 21] Towards a Rigorous Theoretical Analysis and Evaluation of GNN Explanations [paper]
  22. [Arxiv 21] SEEN: Sharpening Explanations for Graph Neural Networks using Explanations from Neighborhoods [paper]
  23. [Arxiv 21] Zorro: Valid, Sparse, and Stable Explanations in Graph Neural Networks [paper]
  24. [Arxiv 21] Preserve, Promote, or Attack? GNN Explanation via Topology Perturbation [paper]
  25. [Arxiv 21] Learnt Sparsification for Interpretable Graph Neural Networks [paper]
  26. [Arxiv 21] Efficient and Interpretable Robot Manipulation with Graph Neural Networks [paper]
  27. [Arxiv 21] IA-GCN: Interpretable Attention based Graph Convolutional Network for Disease prediction [paper]
  28. [ICML 2021] On Explainability of Graph Neural Networks via Subgraph Explorations[paper]
  29. [ICML 2021] Generative Causal Explanations for Graph Neural Networks[paper]
  30. [ICML 2021] Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity[paper]
  31. [ICML 2021] Automated Graph Representation Learning with Hyperparameter Importance Explanation[paper]
  32. [ICML workshop 21] GCExplainer: Human-in-the-Loop Concept-based Explanations for Graph Neural Networks [paper]
  33. [ICML workshop 21] BrainNNExplainer: An Interpretable Graph Neural Network Framework for Brain Network based Disease Analysis [paper]
  34. [ICML workshop 21] Reliable Graph Neural Network Explanations Through Adversarial Training [paper]
  35. [ICML workshop 21] Reimagining GNN Explanations with ideas from Tabular Data [paper]
  36. [ICML workshop 21] Towards Automated Evaluation of Explanations in Graph Neural Networks [paper]
  37. [ICML workshop 21] Quantitative Evaluation of Explainable Graph Neural Networks for Molecular Property Prediction [paper]
  38. [ICML workshop 21] SALKG: Learning From Knowledge Graph Explanations for Commonsense Reasoning [paper]
  39. [ICLR 2021] Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking[paper]
  40. [ICLR 2021] Graph Information Bottleneck for Subgraph Recognition [paper]
  41. [KDD 2021] When Comparing to Ground Truth is Wrong: On Evaluating GNN Explanation Methods[paper]
  42. [KDD 2021] Counterfactual Graphs for Explainable Classification of Brain Networks [paper]
  43. [AAAI 2021] Motif-Driven Contrastive Learning of Graph Representations [paper]
  44. [WWW 2021] Interpreting and Unifying Graph Neural Networks with An Optimization Framework [paper]
  45. [ICDM 2021] GNES: Learning to Explain Graph Neural Networks [paper]
  46. [ICDM 2021] GCN-SE: Attention as Explainability for Node Classification in Dynamic Graphs [paper]
  47. [ICDM 2021] Multi-objective Explanations of GNN Predictions
  48. [CIKM 2021] Towards Self-Explainable Graph Neural Network [paper]
  49. [ECML PKDD 2021] GraphSVX: Shapley Value Explanations for Graph Neural Networks [paper]
  50. [WiseML 2021] Explainability-based Backdoor Attacks Against Graph Neural Networks [paper]
  51. [IJCNN 21] MEG: Generating Molecular Counterfactual Explanations for Deep Graph Networks [paper]
  52. [KDD workshop 21] CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks [paper]
  53. [ICCSA 2021] Understanding Drug Abuse Social Network Using Weighted Graph Neural Networks Explainer [paper]
  54. [NeSy 21] A New Concept for Explaining Graph Neural Networks [paper]
  55. [Information Fusion 21] Towards multi-modal causability with Graph Neural Networks enabling information fusion for explainable AI [paper]
  56. [Patterns 21] hcga: Highly Comparative Graph Analysis for network phenotyping [paper]

Year 2020

  1. [NeurIPS 2020] Parameterized Explainer for Graph Neural Network.[paper]
  2. [NeurIPS 2020] PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks [paper]
  3. [KDD 2020] XGNN: Towards Model-Level Explanations of Graph Neural Networks [paper]
  4. [ACL 2020]GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media. paper
  5. [ICML workstop 2020] Contrastive Graph Neural Network Explanation [paper]
  6. [ICML workstop 2020] Towards Explainable Graph Representations in Digital Pathology [paper]
  7. [NeurIPS workshop 2020] Explaining Deep Graph Networks with Molecular Counterfactuals [paper]
  8. [[email protected] 2020] Exploring Graph-Based Neural Networks for Automatic Brain Tumor Segmentation" [paper]
  9. [Arxiv 2020] Graph Neural Networks Including Sparse Interpretability [paper]
  10. [OpenReview 20] A Framework For Differentiable Discovery Of Graph Algorithms [paper]
  11. [OpenReview 20] Causal Screening to Interpret Graph Neural Networks [paper]
  12. [Arxiv 20] xFraud: Explainable Fraud Transaction Detection on Heterogeneous Graphs [paper]
  13. [Arxiv 20] Explaining decisions of Graph Convolutional Neural Networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer [paper]
  14. [Arxiv 20] Understanding Graph Neural Networks from Graph Signal Denoising Perspectives [paper]
  15. [Arxiv 20] Understanding the Message Passing in Graph Neural Networks via Power Iteration [paper]
  16. [Arxiv 20] xERTE: Explainable Reasoning on Temporal Knowledge Graphs for Forecasting Future Links [paper]
  17. [IJCNN 20] GCN-LRP explanation: exploring latent attention of graph convolutional networks] [paper]
Owner
Dongsheng Luo
Ph.D. Student @ PSU
Dongsheng Luo
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
Perturb-and-max-product: Sampling and learning in discrete energy-based models

Perturb-and-max-product: Sampling and learning in discrete energy-based models This repo contains code for reproducing the results in the paper Pertur

Vicarious 2 Mar 14, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Multi-Objective Loss Balancing for Physics-Informed Deep Learning Code for ReLoBRaLo. Abstract Physics Informed Neural Networks (PINN) are algorithms

Rafael Bischof 16 Dec 12, 2022
Original code for "Zero-Shot Domain Adaptation with a Physics Prior"

Zero-Shot Domain Adaptation with a Physics Prior [arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and J

Attila Lengyel 40 Dec 21, 2022
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Reproduced Code for Image Forgery Detection papers.

Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s

Umar Masud 15 Dec 06, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022