Lexical Substitution Framework

Overview

LexSubGen

Lexical Substitution Framework

This repository contains the code to reproduce the results from the paper:

Arefyev Nikolay, Sheludko Boris, Podolskiy Alexander, Panchenko Alexander, "Always Keep your Target in Mind: Studying Semantics and Improving Performance of Neural Lexical Substitution", Proceedings of the 28th International Conference on Computational Linguistics, 2020

Installation

Clone LexSubGen repository from github.com.

git clone https://github.com/Samsung/LexSubGen
cd LexSubGen

Setup anaconda environment

  1. Download and install conda
  2. Create new conda environment
    conda create -n lexsubgen python=3.7.4
  3. Activate conda environment
    conda activate lexsubgen
  4. Install requirements
    pip install -r requirements.txt
  5. Download spacy resources and install context2vec and word_forms from github repositories
    ./init.sh

Setup Web Application

If you do not plan to use the Web Application, skip this section and go to the next!

  1. Download and install NodeJS and npm.
  2. Run script for install dependencies and create build files.
bash web_app_setup.sh

Install lexsubgen library

python setup.py install

Results

Results of the lexical substitution task are presented in the following table. To reproduce them, follow the instructions above to install the correct dependencies.

Model SemEval COINCO
GAP [email protected] [email protected] [email protected] GAP [email protected] [email protected] [email protected]
OOC 44.65 16.82 12.83 18.36 46.3 19.58 15.03 12.99
C2V 55.82 7.79 5.92 11.03 48.32 8.01 6.63 7.54
C2V+embs 53.39 28.01 21.72 33.52 50.73 29.64 24.0 21.97
ELMo 53.66 11.58 8.55 13.88 49.47 13.58 10.86 11.35
ELMo+embs 54.16 32.0 22.2 31.82 52.22 35.96 26.62 23.8
BERT 54.42 38.39 27.73 39.57 50.5 42.56 32.64 28.73
BERT+embs 53.87 41.64 30.59 43.88 50.85 46.05 35.63 31.67
RoBERTa 56.74 32.25 24.26 36.65 50.82 35.12 27.35 25.41
RoBERTa+embs 58.74 43.19 31.19 44.61 54.6 46.54 36.17 32.1
XLNet 59.12 31.75 22.83 34.95 53.39 38.16 28.58 26.47
XLNet+embs 59.62 49.53 34.9 47.51 55.63 51.5 39.92 35.12

Results reproduction

Here we list XLNet reproduction commands that correspond to the results presented in the table above. Reproduction commands for all models you can find in scripts/lexsub-all-models.sh Besides saving to the 'run-directory' all results are saved using mlflow. To check them you can run mlflow ui in LexSubGen directory and then open the web page in a browser.

Also you can use pytest to check the reproducibility. But it may take a long time:

pytest tests/results_reproduction
  • XLNet:

XLNet Semeval07:

python lexsubgen/evaluations/lexsub.py solve --substgen-config-path configs/subst_generators/lexsub/xlnet.jsonnet --dataset-config-path configs/dataset_readers/lexsub/semeval_all.jsonnet --run-dir='debug/lexsub-all-models/semeval_all_xlnet' --force --experiment-name='lexsub-all-models' --run-name='semeval_all_xlnet'

XLNet CoInCo:

python lexsubgen/evaluations/lexsub.py solve --substgen-config-path configs/subst_generators/lexsub/xlnet.jsonnet --dataset-config-path configs/dataset_readers/lexsub/coinco.jsonnet --run-dir='debug/lexsub-all-models/coinco_xlnet' --force --experiment-name='lexsub-all-models' --run-name='coinco_xlnet'

XLNet with embeddings similarity Semeval07:

python lexsubgen/evaluations/lexsub.py solve --substgen-config-path configs/subst_generators/lexsub/xlnet_embs.jsonnet --dataset-config-path configs/dataset_readers/lexsub/semeval_all.jsonnet --run-dir='debug/lexsub-all-models/semeval_all_xlnet_embs' --force --experiment-name='lexsub-all-models' --run-name='semeval_all_xlnet_embs'

XLNet with embeddings similarity CoInCo:

python lexsubgen/evaluations/lexsub.py solve --substgen-config-path configs/subst_generators/lexsub/xlnet_embs.jsonnet --dataset-config-path configs/dataset_readers/lexsub/coinco.jsonnet --run-dir='debug/lexsub-all-models/coinco_xlnet_embs' --force --experiment-name='lexsub-all-models' --run-name='coinco_xlnet_embs'

Word Sense Induction Results

Model SemEval 2013 SemEval 2010
AVG AVG
XLNet 33.4 52.1
XLNet+embs 37.3 54.1

To reproduce these results use 2.3.0 version of transformers and the following command:

bash scripts/wsi.sh

Web application

You could use command line interface to run Web application.

# Run main server
lexsubgen-app run --host HOST 
                  --port PORT 
                  [--model-configs CONFIGS] 
                  [--start-ids START-IDS] 
                  [--start-all] 
                  [--restore-session]

Example:

# Run server and serve models BERT and XLNet. 
# For BERT create server for serving model and substitute generator instantly (load resources in memory).
# For XLNet create only server.
lexsubgen-app run --host '0.0.0.0' 
                  --port 5000 
                  --model-configs '["my_cool_configs/bert.jsonnet", "my_awesome_configs/xlnet.jsonnet"]' 
                  --start-ids '[0]'

# After shutting down server JSON file with session dumps in the '~/.cache/lexsubgen/app_session.json'.
# The content of this file looks like:
# [
#     'my_cool_configs/bert.jsonnet',
#     'my_awesome_configs/xlnet.jsonnet',
# ]
# You can restore it with flag 'restore-session'
lexsubgen-app run --host '0.0.0.0' 
                  --port 5000 
                  --restore-session
# BERT and XLNet restored now
Arguments:
Argument Default Description
--help Show this help message and exit
--host IP address of running server host
--port 5000 Port for starting the server
--model-configs [] List of file paths to the model configs.
--start-ids [] Zero-based indices of served models for which substitute generators will be created
--start-all False Whether to create substitute generators for all served models
--restore-session False Whether to restore session from previous Web application run

FAQ

  1. How to use gpu? - You can use environment variable CUDA_VISIBLE_DEVICES to use gpu for inference: export CUDA_VISIBLE_DEVICES='1' or CUDA_VISIBLE_DEVICES='1' before your command.
  2. How to run tests? - You can use pytest: pytest tests
Owner
Samsung
Samsung Electronics Co.,Ltd.
Samsung
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

912 Jan 08, 2023
Tensorflow/Keras Plug-N-Play Deep Learning Models Compilation

DeepBay This project was created with the objective of compile Machine Learning Architectures created using Tensorflow or Keras. The architectures mus

Whitman Bohorquez 4 Sep 26, 2022
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi šŸ‘‹ , I'm Alireza A Python Developer Boy šŸ”­ I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view.

CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view. Center-based 3D Object Detection and Tracking, Tianwei Yin, Xin

Tianwei Yin 134 Dec 23, 2022
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

76 Dec 12, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems

AequeVox Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems README under development. Python Packages Required

Sai Sathiesh 2 Aug 28, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022