Lexical Substitution Framework

Overview

LexSubGen

Lexical Substitution Framework

This repository contains the code to reproduce the results from the paper:

Arefyev Nikolay, Sheludko Boris, Podolskiy Alexander, Panchenko Alexander, "Always Keep your Target in Mind: Studying Semantics and Improving Performance of Neural Lexical Substitution", Proceedings of the 28th International Conference on Computational Linguistics, 2020

Installation

Clone LexSubGen repository from github.com.

git clone https://github.com/Samsung/LexSubGen
cd LexSubGen

Setup anaconda environment

  1. Download and install conda
  2. Create new conda environment
    conda create -n lexsubgen python=3.7.4
  3. Activate conda environment
    conda activate lexsubgen
  4. Install requirements
    pip install -r requirements.txt
  5. Download spacy resources and install context2vec and word_forms from github repositories
    ./init.sh

Setup Web Application

If you do not plan to use the Web Application, skip this section and go to the next!

  1. Download and install NodeJS and npm.
  2. Run script for install dependencies and create build files.
bash web_app_setup.sh

Install lexsubgen library

python setup.py install

Results

Results of the lexical substitution task are presented in the following table. To reproduce them, follow the instructions above to install the correct dependencies.

Model SemEval COINCO
GAP [email protected] [email protected] [email protected] GAP [email protected] [email protected] [email protected]
OOC 44.65 16.82 12.83 18.36 46.3 19.58 15.03 12.99
C2V 55.82 7.79 5.92 11.03 48.32 8.01 6.63 7.54
C2V+embs 53.39 28.01 21.72 33.52 50.73 29.64 24.0 21.97
ELMo 53.66 11.58 8.55 13.88 49.47 13.58 10.86 11.35
ELMo+embs 54.16 32.0 22.2 31.82 52.22 35.96 26.62 23.8
BERT 54.42 38.39 27.73 39.57 50.5 42.56 32.64 28.73
BERT+embs 53.87 41.64 30.59 43.88 50.85 46.05 35.63 31.67
RoBERTa 56.74 32.25 24.26 36.65 50.82 35.12 27.35 25.41
RoBERTa+embs 58.74 43.19 31.19 44.61 54.6 46.54 36.17 32.1
XLNet 59.12 31.75 22.83 34.95 53.39 38.16 28.58 26.47
XLNet+embs 59.62 49.53 34.9 47.51 55.63 51.5 39.92 35.12

Results reproduction

Here we list XLNet reproduction commands that correspond to the results presented in the table above. Reproduction commands for all models you can find in scripts/lexsub-all-models.sh Besides saving to the 'run-directory' all results are saved using mlflow. To check them you can run mlflow ui in LexSubGen directory and then open the web page in a browser.

Also you can use pytest to check the reproducibility. But it may take a long time:

pytest tests/results_reproduction
  • XLNet:

XLNet Semeval07:

python lexsubgen/evaluations/lexsub.py solve --substgen-config-path configs/subst_generators/lexsub/xlnet.jsonnet --dataset-config-path configs/dataset_readers/lexsub/semeval_all.jsonnet --run-dir='debug/lexsub-all-models/semeval_all_xlnet' --force --experiment-name='lexsub-all-models' --run-name='semeval_all_xlnet'

XLNet CoInCo:

python lexsubgen/evaluations/lexsub.py solve --substgen-config-path configs/subst_generators/lexsub/xlnet.jsonnet --dataset-config-path configs/dataset_readers/lexsub/coinco.jsonnet --run-dir='debug/lexsub-all-models/coinco_xlnet' --force --experiment-name='lexsub-all-models' --run-name='coinco_xlnet'

XLNet with embeddings similarity Semeval07:

python lexsubgen/evaluations/lexsub.py solve --substgen-config-path configs/subst_generators/lexsub/xlnet_embs.jsonnet --dataset-config-path configs/dataset_readers/lexsub/semeval_all.jsonnet --run-dir='debug/lexsub-all-models/semeval_all_xlnet_embs' --force --experiment-name='lexsub-all-models' --run-name='semeval_all_xlnet_embs'

XLNet with embeddings similarity CoInCo:

python lexsubgen/evaluations/lexsub.py solve --substgen-config-path configs/subst_generators/lexsub/xlnet_embs.jsonnet --dataset-config-path configs/dataset_readers/lexsub/coinco.jsonnet --run-dir='debug/lexsub-all-models/coinco_xlnet_embs' --force --experiment-name='lexsub-all-models' --run-name='coinco_xlnet_embs'

Word Sense Induction Results

Model SemEval 2013 SemEval 2010
AVG AVG
XLNet 33.4 52.1
XLNet+embs 37.3 54.1

To reproduce these results use 2.3.0 version of transformers and the following command:

bash scripts/wsi.sh

Web application

You could use command line interface to run Web application.

# Run main server
lexsubgen-app run --host HOST 
                  --port PORT 
                  [--model-configs CONFIGS] 
                  [--start-ids START-IDS] 
                  [--start-all] 
                  [--restore-session]

Example:

# Run server and serve models BERT and XLNet. 
# For BERT create server for serving model and substitute generator instantly (load resources in memory).
# For XLNet create only server.
lexsubgen-app run --host '0.0.0.0' 
                  --port 5000 
                  --model-configs '["my_cool_configs/bert.jsonnet", "my_awesome_configs/xlnet.jsonnet"]' 
                  --start-ids '[0]'

# After shutting down server JSON file with session dumps in the '~/.cache/lexsubgen/app_session.json'.
# The content of this file looks like:
# [
#     'my_cool_configs/bert.jsonnet',
#     'my_awesome_configs/xlnet.jsonnet',
# ]
# You can restore it with flag 'restore-session'
lexsubgen-app run --host '0.0.0.0' 
                  --port 5000 
                  --restore-session
# BERT and XLNet restored now
Arguments:
Argument Default Description
--help Show this help message and exit
--host IP address of running server host
--port 5000 Port for starting the server
--model-configs [] List of file paths to the model configs.
--start-ids [] Zero-based indices of served models for which substitute generators will be created
--start-all False Whether to create substitute generators for all served models
--restore-session False Whether to restore session from previous Web application run

FAQ

  1. How to use gpu? - You can use environment variable CUDA_VISIBLE_DEVICES to use gpu for inference: export CUDA_VISIBLE_DEVICES='1' or CUDA_VISIBLE_DEVICES='1' before your command.
  2. How to run tests? - You can use pytest: pytest tests
Owner
Samsung
Samsung Electronics Co.,Ltd.
Samsung
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints

CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier

刘芮金 32 Dec 20, 2022
Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Line-level Handwritten Text Recognition with TensorFlow This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and

Hoàng Tùng Lâm (Linus) 72 May 07, 2022
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Kumar Manas 2 Dec 09, 2021
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
Image transformations designed for Scene Text Recognition (STR) data augmentation. Published at ICCV 2021 Workshop on Interactive Labeling and Data Augmentation for Vision.

Data Augmentation for Scene Text Recognition (ICCV 2021 Workshop) (Pronounced as "strog") Paper Arxiv Why it matters? Scene Text Recognition (STR) req

Rowel Atienza 152 Dec 28, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models (published in ICLR2018)

Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models Pouya Samangouei*, Maya Kabkab*, Rama Chellappa [*: authors co

Maya Kabkab 212 Dec 07, 2022
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023