DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

Overview

DVG-Face: Dual Variational Generation for HFR

This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, which is an extension version of our previous conference paper. Compared with the previous one, this version has more powerful performances.

Prerequisites

  • Python 3.7.0 & PyTorch 1.5.0 & Torchvision 0.6.0
  • Download LightCNN-29 [Google Drive] pretrained on MS-Celeb-1M.
  • Download Identity Sampler [Google Drive] pretrained on MS-Celeb-1M.
  • Put the above two models in ./pre_train

Train the generator

train_generator.py: Fill out options of '--img_root' and '--train_list', which are the image root and training list of the heterogeneous data, respectively. An example of the training list:

NIR/s2_NIR_10039_001.jpg 232
VIS/s1_VIS_00134_010.jpg 133
NIR/s1_NIR_00118_011.jpg 117

Here we use 'NIR' and 'VIS' in the training list to distinguish the modalities of images. If your list has other distinguishable marks, please change them correspondingly in ./data/dataset.py (lines 28, 38, 66, and 68).

python train_generator.py --gpu_ids 0

Generate images from noise

gen_samples.py: Fill out options of '--img_root' and '--train_list' that are the same as the above options.

python gen_samples.py --gpu_ids 0

The generated images will be saved in ./gen_images

Train the recognition model LightCNN-29

train_lightcnn.py: Fill out options of 'num_classes', '--img_root_A', and '--train_list_A', where the last two options are the same as the above options.

python train_ligthcnn.py --gpu_ids 0,1

Citation

If you use our code for your research, please cite the following papers:

@article{fu2021dvg,
  title={DVG-face: Dual variational generation for heterogeneous face recognition},
  author={Fu, Chaoyou and Wu, Xiang and Hu, Yibo and Huang, Huaibo and He, Ran},
  journal={IEEE TPAMI},
  year={2021}
}

@inproceedings{fu2019dual,
  title={Dual Variational Generation for Low-Shot Heterogeneous Face Recognition},
  author={Fu, Chaoyou and Wu, Xiang and Hu, Yibo and Huang, Huaibo and He, Ran},
  booktitle={NeurIPS},
  year={2019}
}
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

9 Nov 14, 2022
A simple Python configuration file operator.

A simple Python configuration file operator This project provides a common way to read configurations using config42. Installation It is possible to i

Scott Lau 2 Nov 08, 2021
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022