Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

Related tags

Deep Learningisvd
Overview

isvd

Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

If you find this code useful, you may cite us as:

@inproceedings{haija2021isvd,
  author={Sami Abu-El-Haija AND Hesham Mostafa AND Marcel Nassar AND Valentino Crespi AND Greg Ver Steeg AND Aram Galstyan},
  title={Implicit SVD for Graph Representation Learning},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021},
}

To run link prediction on Stanford SNAP and node2vec datasets:

To embed with rank-32 SVD:

python3 run_snap_linkpred.py --dataset_name=ppi --dim=32
python3 run_snap_linkpred.py --dataset_name=ca-AstroPh --dim=32
python3 run_snap_linkpred.py --dataset_name=ca-HepTh --dim=32
python3 run_snap_linkpred.py --dataset_name=soc-facebook --dim=32

To embed with rank 256 on half of the training edges, determine "best rank" based on the remaining half, then re-run sVD with the best rank on all of training: (note: negative dim causes this logic):

python3 run_snap_linkpred.py --dataset_name=ppi --dim=-256
python3 run_snap_linkpred.py --dataset_name=ca-AstroPh --dim=-256
python3 run_snap_linkpred.py --dataset_name=ca-HepTh --dim=-256
python3 run_snap_linkpred.py --dataset_name=soc-facebook --dim=-256

To run semi-supervised node classification on Planetoid datasets

You must first download the planetoid dataset as:

mkdir -p ~/data
cd ~/data
git clone [email protected]:kimiyoung/planetoid.git

Afterwards, you may navigate back to this directory and run our code as:

python3 run_planetoid.py --dataset=ind.citeseer
python3 run_planetoid.py --dataset=ind.cora
python3 run_planetoid.py --dataset=ind.pubmed

To run link prediction on Stanford OGB DDI

python3 ogb_linkpred_sing_val_net.py

Note the above will download the dataset from Stanford. If you already have it, you may symlink it into directory dataset

To run link prediction on Stanford OGB ArXiv

As our code imports gttf, you must first clone it onto the repo:

git clone [email protected]:isi-usc-edu/gttf.git

Afterwards, you may run as:

python3 final_obgn_mixed_device.py --funetune_device='gpu:0'

Note the above will download the dataset from Stanford. If you already have it, you may symlink it into directory dataset. You may skip the finetune_device argument if you do not have a GPU installed.

Owner
Sami Abu-El-Haija
Sami Abu-El-Haija
CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Kumar Manas 2 Dec 09, 2021
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix

Dan Kondratyuk 1.2k Dec 26, 2022
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022
a general-purpose Transformer based vision backbone

Swin Transformer By Ze Liu*, Yutong Lin*, Yue Cao*, Han Hu*, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. This repo is the official implement

Microsoft 9.9k Jan 08, 2023
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022