D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Related tags

Deep LearningISC2021
Overview

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp

This is the source code of our 3rd place solution to matching track of Image Similarity Challenge (ISC) 2021 organized by Facebook AI. This repo will tell you how to get our result step by step.

Method Overview

For the Matching Track task, we use a global and local dual retrieval method. The global recall model is EsViT, the same as task Descriptor Track. The local recall used SIFT point features. As shown in the figure, our pipeline is divided into four modules. When using an image for query, it is first put into the preprocessing module for overlay detection. Then the global and local features are extracted and retrieved in parallel. There are three recall branches: global recall, original local recall and cropped local recall. The last module will compute the matching score of three branches and merge them into the final result.

method_overview

Installation

Please install python 3.7, Pytorch 1.8 (or higher version) and some packages according to requirements.txt.

gcc version 7.3.1

We run on a 8GPUs (Tesla V100-SXM2-32GB, 32510.5MB), 48CPUs and 300G Memory machine.

Get Result Demo

Now we will describe how to get our result, we use a query image Q24789.jpg as input for demo.

step1: query images preprocess

We train a yolov5 to detect the crop augment in query images. The detils are in README.md of Team: AITechnology in task Descriptor Track. Due to different parameters, we need to preprocess the local recall and global recall respectively.

python preprocessing.py $origin_image_path $save_image_result_path

e.g.
______
cd preprocess
python preprocessing_global.py ../data/queryimages/ ../data/queryimages_crop_global/
python preprocessing_local.py ../data/queryimages/ ../data/queryimages_crop_local/

*note: If Arial.ttf download fails, please copy the local yolov5/Arial.ttf to the specified directory following the command line prompt. cp yolov5/Arial.ttf /root/.config/Ultralytics/Arial.ttf

step2: get original image's local feature

First export the path.

cd local_fea/feature_extract
export LD_LIBRARY_PATH=./extLib/ 

Run the executable program localfea_extract_sift to get the SIFT local point feature, and out to a txt file.

Usage: ./localfea_extract_sift 
    
     
     
      

e.g.
./localfea_extract_sift Q24789 ../../data/queryimages/Q24789.jpg ../feature_out/Q24789.txt

     
    
   

Or you can extract all query images by a list.

python multi_extract_sift.py ../../data/querylist_demo.txt ../../data/queryimages/ ../feature_out/

For example, two point features in a image result txt file are:

Q24789_0_3.1348_65.589_1.76567_-1.09404||0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,13,0,0,0,0,0,0,16,28,7,5,0,0,0,0,0,0,0,0,20,12,0,0,23,5,0,0,29,29,7,12,56,29,5,0,0,11,7,20,38,45,10,0,0,0,0,14,0,0,0,0,39,56,36,8,39,14,0,0,46,56,21,24,56,22,0,0,5,8,8,39,38,11,0,0,0,0,19,47,0,0,0,0,8,56,56,7,37,0,0,0,10,52,56,56,52,0,0,0,0,0,35,56,11,0,0,0,0,0,54,45
Q24789_1_8.26344_431.038_1.75921_1.22328||42,27,0,4,11,12,9,14,49,28,0,6,17,25,18,14,45,37,4,0,12,45,8,9,8,17,9,0,27,50,6,0,41,24,0,0,10,14,19,20,50,34,0,6,20,22,17,21,36,22,4,4,43,50,15,12,26,32,8,0,17,50,17,6,28,12,0,0,0,21,31,21,50,14,0,0,17,31,23,38,19,10,9,17,50,50,14,15,17,23,13,10,19,45,26,8,11,11,0,0,0,6,6,0,28,13,0,0,8,20,12,15,11,9,0,0,24,47,12,9,18,38,22,6,13,28,10,8
...

step3: retrieval use original image local feature

We use the GPU Faiss to retrieval, because there are about 600 million SIFT point features in reference images. They need about 165G GPU Memory for Float16 compute.

Firstly, you need extract all local features of reference images by multi_extract_sift.py and store them in uint8 type to save space. (ref_sift_fea_300.pkl (68G) and ref_sift_name_300.pkl (25G))

Then get original image local recall result:

cd local_fea/faiss_search
python db_search.py ../feature_out/ ../faiss_out/local_pair_result.txt

For example, the result txt file ../faiss_out/local_pair_result.txt:

Q24789.jpg,R540735.jpg

step4: get crop image's local feature (only for part images which have crop result)

Same as step2, but only use the croped image in ../../preprocess/local_crop_list.txt.

cd local_fea/feature_extract
python multi_extract_sift.py ../../preprocess/local_crop_list.txt ../../data/queryimages_crop_local/ ../crop_feature_out/

step5: retrieval use crop image local feature (only for part images which have crop result)

Same as step3:

cd local_fea/faiss_search
python db_search.py ../crop_feature_out/ ../crop_faiss_out/crop_local_pair_result.txt

step6: get image's global feature

We train a EsViT model (follow the rules closely) to extract 256 dims global features, the detils are in README.md of Team: AITechnology in task Descriptor Track.

*note: for global feature, if the image have croped image, we will extract feature use the croped image, else use the origin image.

Generate h5 descriptors for all query images and reference images as submission style:

cd global_fea/feature_extract
python predict_FB_model.py --model checkpoints/EsViT_SwinB_finetune_bs8_lr0.0001_adjustlr_0_margin1.0_dataFB_epoch200.pth  --save_h5_name fb_descriptors_demo.h5  --model_type EsViT_SwinB_W14 --query ./query_list_demo.txt --total ./ref_list_demo.txt

*note: The --query and --total parameters are specified as query list and reference list, respectively.

The h5 file will be saved in ./h5_descriptors/fb_descriptors.h5

step7: retrieval use image's global feature

We have already added our h5 file in phase 1. Use faiss to get top1 pairs.

cd global_fea/faiss_search
python faiss_topk.py ../feature_extract/h5_descriptors/fb_descriptors.h5 ./global_pair_result.txt

step8: compute match score and final result

We use the SIFT feature + KNN-matching (K=2) to compute match point as score. We have already compiled it into an executable program.

Usage: ./match_score 
    
     
      
      

      
     
    
   

For example, to get original image local pairs score:

cd match_score
export LD_LIBRARY_PATH=../local_fea/feature_extract/extLib/
./match_score ../local_fea/faiss_out/local_pair_result.txt ../data/queryimages ../data/referenceimages/ ./local_pair_score.txt

The other two recall pairs are the same:

global: 
./match_score ../global_fea/faiss_search/global_pair_result.txt ../data/queryimages_crop_global ../data/referenceimages/ ./global_pair_score.txt

crop local:
./match_score ../local_fea/crop_faiss_out/crop_local_pair_result.txt ../data/queryimages_crop_local ../data/referenceimages/ ./crop_local_pair_score.txt

Finally, the three recall pairs are merged by:

python merge_score.py ./final_result.txt

Others

If you have any problem or error during running code, please email to us.

Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
Rl-quickstart - Reinforcement Learning Quickstart

Reinforcement Learning Quickstart To get setup with the repository, git clone ht

UCLA DataRes 3 Jun 16, 2022
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
Hyperbolic Image Segmentation, CVPR 2022

Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :

Mina Ghadimi Atigh 46 Dec 29, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022