Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Overview

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Solution writeup: https://www.kaggle.com/c/g2net-gravitational-wave-detection/discussion/275341

Instructions

1. Download data

You have to download the competition dataset from competition website, and place the files in input/ directory.

┣ input/
┃   ┣ training_labels.csv
┃   ┣ sample_submission.csv
┃   ┣ train/
┃   ┣ test/
┃
┣ configs.py
┣ ...

(Optional:) Add your hardware configurations

# configs.py
HW_CFG = {
    'RTX3090': (16, 128, 1, 24), # CPU count, RAM amount(GB), GPU count, GPU RAM(GB)
    'A100': (9, 60, 1, 40), 
    'Your config', (128, 512, 8, 40) # add your hardware config!
}

2. Setup python environment

conda

conda env create -n kumaconda -f=environment.yaml
conda activate kumaconda

docker

WIP

3. Prepare data

Two new files - input/train.csv and input/test/.csv will be created.

python prep_data.py

(Optional:) Prepare waveform cache

Optionally you can speed up training by making waveform cache.
This is not recommend if your machine has RAM size smaller than 32GB.
input/train_cache.pickle and input/test_cache.pickle will be created.

python prep_data.py --cache

Then, add cache path to Baseline class in configs.py.

# configs.py
class Baseline:
    name = 'baseline'
    seed = 2021
    train_path = INPUT_DIR/'train.csv'
    test_path = INPUT_DIR/'test.csv'
    train_cache = INPUT_DIR/'train_cache.pickle' # here
    test_cache = INPUT_DIR/'test_cache.pickle' # here
    cv = 5

4. Train nueral network

Each experiment class has a name (e.g. name for Nspec16 is nspec_16).
Outputs of an experiment are

  • outoffolds.npy : (train size, 1) np.float32
  • predictions.npy : (cv fold, test size, 1) np.float32
  • {name}_{timestamp}.log : training log
  • foldx.pt : pytorch checkpoint

All outputs will be created in results/{name}/.

python train.py --config {experiment class}
# [Options]
# --progress_bar    : Everyone loves progress bar
# --inference       : Run inference only
# --tta             : Run test time augmentations (FlipWave)
# --limit_fold x    : Train a single fold x. You must run inference again by yourself.

5. Train neural network again (pseudo-label)

For experiments with name starting with Pseudo, you must use train_pseudo.py.
Outputs and options are the same as train.py.
Make sure the dependent experiment (see the table below) was successfully run.

python train_pseudo.py --config {experiment class}

Experiments

# Experiment Dependency Frontend Backend Input size CV Public LB Private LB
1 Pseudo06 Nspec12 CWT efficientnet-b2 256 x 512 0.8779 0.8797 0.8782
2 Pseodo07 Nspec16 CWT efficientnet-b2 128 x 1024 0.87841 0.8801 0.8787
3 Pseudo12 Nspec12arch0 CWT densenet201 256 x 512 0.87762 0.8796 0.8782
4 Pseudo13 MultiInstance04 CWT xcit-tiny-p16 384 x 768 0.87794 0.8800 0.8782
5 Pseudo14 Nspec16arch17 CWT efficientnet-b7 128 x 1024 0.87957 0.8811 0.8800
6 Pseudo18 Nspec21 CWT efficientnet-b4 256 x 1024 0.87942 0.8812 0.8797
7 Pseudo10 Nspec16spec13 CWT efficientnet-b2 128 x 1024 0.87875 0.8802 0.8789
8 Pseudo15 Nspec22aug1 WaveNet efficientnet-b2 128 x 1024 0.87846 0.8809 0.8794
9 Pseudo16 Nspec22arch2 WaveNet efficientnet-b6 128 x 1024 0.87982 0.8823 0.8807
10 Pseudo19 Nspec22arch6 WaveNet densenet201 128 x 1024 0.87831 0.8818 0.8804
11 Pseudo17 Nspec23arch3 CNN efficientnet-b6 128 x 1024 0.87982 0.8823 0.8808
12 Pseudo21 Nspec22arch7 WaveNet effnetv2-m 128 x 1024 0.87861 0.8831 0.8815
13 Pseudo22 Nspec23arch5 CNN effnetv2-m 128 x 1024 0.87847 0.8817 0.8799
14 Pseudo23 Nspec22arch12 WaveNet effnetv2-l 128 x 1024 0.87901 0.8829 0.8811
15 Pseudo24 Nspec30arch2 WaveNet efficientnet-b6 128 x 1024 0.8797 0.8817 0.8805
16 Pseudo25 Nspec25arch1 WaveNet efficientnet-b3 256 x 1024 0.87948 0.8820 0.8803
17 Pseudo26 Nspec22arch10 WaveNet resnet200d 128 x 1024 0.87791 0.881 0.8797
18 PseudoSeq04 Seq03aug3 ResNet1d-18 - 0.87663 0.8804 0.8785
19 PseudoSeq07 Seq12arch4 WaveNet - 0.87698 0.8796 0.8784
20 PseudoSeq03 Seq09 DenseNet1d-121 - 0.86826 0.8723 0.8703
Owner
Hiroshechka Y
ML Engineer | Kaggle Master | Public Health
Hiroshechka Y
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
A benchmark framework for Tensorflow

TensorFlow benchmarks This repository contains various TensorFlow benchmarks. Currently, it consists of two projects: PerfZero: A benchmark framework

1.1k Dec 30, 2022
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
Indices Matter: Learning to Index for Deep Image Matting

IndexNet Matting This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper: Indices Matt

Hao Lu 357 Nov 26, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Harihar

Jang Hyun Cho 164 Dec 30, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022